Smolenaars Marcel M W, Kasperaitis Marcelle A M, Richardson Paul E, Rodenburg Kees W, Van der Horst Dick J
Department of Biochemical Physiology, Faculty of Biology, Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands.
J Lipid Res. 2005 Mar;46(3):412-21. doi: 10.1194/jlr.M400374-JLR200. Epub 2004 Dec 16.
The biosynthesis of neutral fat-transporting lipoproteins involves the lipidation of their nonexchangeable apolipoprotein. In contrast to its mammalian homolog apolipoprotein B, however, insect apolipophorin-II/I (apoLp-II/I) is cleaved posttranslationally at a consensus substrate sequence for furin, resulting in the appearance of two apolipoproteins in insect lipoprotein. To characterize the cleavage process, a truncated cDNA encoding the N-terminal 38% of Locusta migratoria apoLp-II/I, including the cleavage site, was expressed in insect Sf9 cells. This resulted in the secretion of correctly processed apoLp-II and truncated apoLp-I. The cleavage could be impaired by the furin inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone (decRVKRcmk) as well as by mutagenesis of the consensus substrate sequence for furin, as indicated by the secretion of uncleaved apoLp-II/I-38. Treatment of L. migratoria fat body, the physiological site of lipoprotein biosynthesis, with decRVKRcmk similarly resulted in the secretion of uncleaved apoLp-II/I, which was integrated in lipoprotein particles of buoyant density identical to wild-type high density lipophorin (HDLp). These results show that apoLp-II/I is posttranslationally cleaved by an insect furin and that biosynthesis and secretion of HDLp can occur independent of this processing step. Structure modeling indicates that the cleavage of apoLp-II/I represents a molecular adaptation in homologous apolipoprotein structures. We propose that cleavage enables specific features of insect lipoproteins, such as low density lipoprotein formation, endocytic recycling, and involvement in coagulation.
中性脂肪转运脂蛋白的生物合成涉及到其不可交换载脂蛋白的脂化过程。然而,与哺乳动物同源的载脂蛋白B不同,昆虫载脂蛋白-II/I(apoLp-II/I)在翻译后会在弗林蛋白酶的共有底物序列处被切割,导致昆虫脂蛋白中出现两种载脂蛋白。为了表征这种切割过程,在昆虫Sf9细胞中表达了一个截短的cDNA,该cDNA编码了飞蝗apoLp-II/I N端38%的序列,包括切割位点。这导致了正确加工的apoLp-II和截短的apoLp-I的分泌。弗林蛋白酶抑制剂癸酰-精氨酸-缬氨酸-赖氨酸-精氨酸-氯甲基酮(decRVKRcmk)以及对弗林蛋白酶共有底物序列的诱变都可能损害这种切割,未切割的apoLp-II/I-38的分泌表明了这一点。用decRVKRcmk处理飞蝗脂肪体(脂蛋白生物合成的生理部位)同样导致了未切割的apoLp-II/I的分泌,该蛋白整合到了与野生型高密度脂蛋白(HDLp)浮力密度相同的脂蛋白颗粒中。这些结果表明,apoLp-II/I在翻译后被昆虫弗林蛋白酶切割,并且HDLp的生物合成和分泌可以独立于这个加工步骤进行。结构建模表明,apoLp-II/I的切割代表了同源载脂蛋白结构中的一种分子适应性变化。我们提出,切割使得昆虫脂蛋白具有特定特征,如低密度脂蛋白的形成、内吞再循环以及参与凝血过程。