Van der Horst Dick J, Rodenburg Kees W
Biomol Concepts. 2010 Aug 1;1(2):165-83. doi: 10.1515/bmc.2010.012.
Circulatory fat transport in animals relies on members of the large lipid transfer protein (LLTP) superfamily, including mammalian apolipoprotein B (apoB) and insect apolipophorin II/I (apoLp-II/I). ApoB and apoLp-II/I, constituting the structural (non-exchangeable) basis for the assembly of various lipoproteins, acquire lipids through microsomal triglyceride-transfer protein, another LLTP family member, and bind them by means of amphipathic α-helical and β-sheet structural motifs. Comparative research reveals that LLTPs evolved from the earliest animals and highlights the structural adaptations in these lipid-binding proteins. Thus, in contrast to apoB, apoLp-II/I is cleaved post-translationally by a furin, resulting in the appearance of two non-exchangeable apolipoproteins in the single circulatory lipoprotein in insects, high-density lipophorin (HDLp). The remarkable structural similarities between mammalian and insect lipoproteins notwithstanding important functional differences relate to the mechanism of lipid delivery. Whereas in mammals, partial delipidation of apoB-containing lipoproteins eventually results in endocytic uptake of their remnants, mediated by members of the low-density lipoprotein receptor (LDLR) family, and degradation in lysosomes, insect HDLp functions as a reusable lipid shuttle capable of alternate unloading and reloading of lipid. Also, during muscular efforts (flight activity), an HDLp-based lipoprotein shuttle provides for the transport of lipid for energy generation. Although a lipophorin receptor - a homolog of LDLR - was identified that mediates endocytic uptake of HDLp during specific developmental periods, the endocytosed lipoprotein appears to be recycled in a transferrin-like manner. These data highlight that the functional adaptations in the lipoprotein lipid carriers in mammals and insects also emerge with regard to the functioning of their cognate receptors.
动物体内的循环脂肪运输依赖于大型脂质转运蛋白(LLTP)超家族的成员,包括哺乳动物载脂蛋白B(apoB)和昆虫载脂蛋白II/I(apoLp-II/I)。apoB和apoLp-II/I构成了各种脂蛋白组装的结构(不可交换)基础,它们通过微粒体甘油三酯转运蛋白(另一个LLTP家族成员)获取脂质,并通过两亲性α-螺旋和β-折叠结构基序与之结合。比较研究表明,LLTPs起源于最早的动物,并突出了这些脂质结合蛋白的结构适应性。因此,与apoB不同,apoLp-II/I在翻译后被弗林蛋白酶切割,导致在昆虫的单一循环脂蛋白高密度脂蛋白(HDLp)中出现两种不可交换的载脂蛋白。尽管哺乳动物和昆虫的脂蛋白在结构上有显著相似性,但在脂质递送机制方面存在重要的功能差异。在哺乳动物中,含apoB脂蛋白的部分脱脂最终导致其残余物通过低密度脂蛋白受体(LDLR)家族成员介导的内吞作用被摄取,并在溶酶体中降解,而昆虫HDLp则作为一种可重复使用的脂质穿梭体,能够交替卸载和重新装载脂质。此外,在肌肉活动(飞行活动)期间,基于HDLp的脂蛋白穿梭体为能量产生提供脂质运输。虽然已鉴定出一种脂蛋白受体——LDLR的同源物——在特定发育阶段介导HDLp的内吞摄取,但内吞的脂蛋白似乎以类似转铁蛋白的方式被循环利用。这些数据突出表明,哺乳动物和昆虫脂蛋白脂质载体的功能适应性也体现在其同源受体的功能方面。