Suppr超能文献

急性髓系白血病中的基因表达谱分析。

Gene expression profiling in acute myeloid leukemia.

作者信息

Valk Peter J M, Delwel Ruud, Löwenberg Bob

机构信息

Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands.

出版信息

Curr Opin Hematol. 2005 Jan;12(1):76-81. doi: 10.1097/01.moh.0000149610.14438.9a.

Abstract

PURPOSE OF REVIEW

This review deals with the emerging promises of gene expression profiling (GEP) and the currently accumulating knowledge about the classification and the discovery of novel disease entities in clinical acute myeloid leukemia (AML).

RECENT FINDINGS

Gene expression profiling studies in AML have shown that known and novel classes of disease can be recognized by unsupervised analyses. Prognostically informative molecular signatures can be deduced. Supervised analyses show that particular clinically relevant subsets of AML can be predicted with high accuracy with minimal sets of genes.

SUMMARY

The AML GEP studies published to date show a remarkable level of concordance in findings, especially for similar GEP platforms. This confirms the robustness of the methodology and the promise for future applicability of GEP in clinical diagnostics. For the time being, certain technical hurdles remain to be overcome. These relate, for instance, to the conversion of data between different GEP platforms, the effect of differences between various statistical clustering methods, and the still incomplete understanding of the effect of biologic (eg, morphology) and genetic factors on the expression signature. GEP analyses, perhaps in combination with high-throughput mutation analysis and proteomic approaches, may ultimately result in the establishment of a comprehensive diagnostic approach that will yield a key to the precise pathobiologic nature of AML.

摘要

综述目的

本综述探讨基因表达谱分析(GEP)的新前景,以及目前在临床急性髓系白血病(AML)中关于疾病分类和新疾病实体发现的知识积累情况。

最新发现

AML的基因表达谱分析研究表明,通过无监督分析可以识别已知和新的疾病类别。可以推断出具有预后信息的分子特征。有监督分析表明,用最少的基因集就能高精度预测AML特定的临床相关亚组。

总结

迄今为止发表的AML基因表达谱分析研究结果显示出显著的一致性水平,尤其是对于相似的基因表达谱分析平台。这证实了该方法的稳健性以及基因表达谱分析在临床诊断中未来应用的前景。目前,仍有一些技术障碍有待克服。例如,这些障碍涉及不同基因表达谱分析平台之间的数据转换、各种统计聚类方法差异的影响,以及对生物学(如形态学)和遗传因素对表达特征影响的理解仍不完整。基因表达谱分析,或许与高通量突变分析和蛋白质组学方法相结合,最终可能导致建立一种全面的诊断方法,从而为AML精确的病理生物学本质提供关键线索。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验