Suppr超能文献

人类可变数目串联重复序列(VNTRs)的全基因组预测

Genome-wide prediction of human VNTRs.

作者信息

Näslund Karl, Saetre Peter, von Salomé Jenny, Bergström Tomas F, Jareborg Niclas, Jazin Elena

机构信息

Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, S-751 85, Uppsala, Sweden.

出版信息

Genomics. 2005 Jan;85(1):24-35. doi: 10.1016/j.ygeno.2004.10.009.

Abstract

Polymorphic minisatellites, also known as variable number of tandem repeats (VNTRs), are tandem repeat regions that show variation in the number of repeat units among chromosomes in a population. Currently, there are no general methods for predicting which minisatellites have a high probability of being polymorphic, given their sequence characteristics. An earlier approach has focused on potentially highly polymorphic and hypervariable minisatellites, which make up only a small fraction of all minisatellites in the human genome. We have developed a model, based on available minisatellite and VNTR sequence data, that predicts the probability that a minisatellite (unit size > or = 6 bp) identified by the computer program Tandem Repeats Finder is polymorphic (VNTR). According to the model, minisatellites with high copy number and high degree of sequence similarity are most likely to be VNTRs. This approach was used to scan the draft sequence of the human genome for VNTRs. A total of 157,549 minisatellite repeats were found, of which 29,224 are predicted to be VNTRs. Contrary to previous results, VNTRs appear to be widespread and abundant throughout the human genome, with an estimated density of 9.1 VNTRs/Mb.

摘要

多态性微卫星,也称为可变串联重复序列(VNTRs),是串联重复区域,在群体中的染色体间其重复单元数量呈现变异。目前,鉴于微卫星的序列特征,尚无预测哪些微卫星具有高多态性概率的通用方法。早期方法聚焦于潜在的高度多态性和高变异性微卫星,而这些仅占人类基因组中所有微卫星的一小部分。我们基于现有的微卫星和VNTR序列数据开发了一个模型,该模型可预测由计算机程序串联重复序列查找器识别出的微卫星(单元大小≥6bp)为多态性(VNTR)的概率。根据该模型,具有高拷贝数和高序列相似性程度的微卫星最有可能是VNTRs。此方法用于扫描人类基因组草图序列以寻找VNTRs。共发现157,549个微卫星重复序列,其中29,224个被预测为VNTRs。与先前结果相反,VNTRs似乎在整个人类基因组中广泛且丰富,估计密度为9.1个VNTRs/Mb。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验