Centre of Excellence in Synthetic Biology and Department of Bioengineering, Imperial College London, London, United Kingdom.
Nat Commun. 2023 Jun 12;14(1):3471. doi: 10.1038/s41467-023-38850-6.
Predicting the evolution of engineered cell populations is a highly sought-after goal in biotechnology. While models of evolutionary dynamics are far from new, their application to synthetic systems is scarce where the vast combination of genetic parts and regulatory elements creates a unique challenge. To address this gap, we here-in present a framework that allows one to connect the DNA design of varied genetic devices with mutation spread in a growing cell population. Users can specify the functional parts of their system and the degree of mutation heterogeneity to explore, after which our model generates host-aware transition dynamics between different mutation phenotypes over time. We show how our framework can be used to generate insightful hypotheses across broad applications, from how a device's components can be tweaked to optimise long-term protein yield and genetic shelf life, to generating new design paradigms for gene regulatory networks that improve their functionality.
预测工程细胞群体的进化是生物技术中一个备受关注的目标。虽然进化动力学模型远非新事物,但在合成系统中应用很少,因为遗传部件和调控元件的巨大组合带来了独特的挑战。为了解决这一差距,我们在此提出了一个框架,允许将不同遗传器件的 DNA 设计与不断增长的细胞群体中的突变传播联系起来。用户可以指定系统的功能部件和突变异质性的程度进行探索,然后我们的模型会生成随着时间的推移不同突变表型之间的宿主感知的转变动力学。我们展示了如何使用该框架生成广泛应用的有见地的假设,从如何调整器件的组件以优化长期蛋白质产量和遗传保质期,到为改善其功能的基因调控网络生成新的设计范例。