Suppr超能文献

铜-64标记的单氧代四氮杂大环配体的体内评估

In vivo evaluation of copper-64-labeled monooxo-tetraazamacrocyclic ligands.

作者信息

Sun Xiankai, Kim Joonyoung, Martell Arthur E, Welch Michael J, Anderson Carolyn J

机构信息

Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO 63110, USA.

出版信息

Nucl Med Biol. 2004 Nov;31(8):1051-9. doi: 10.1016/j.nucmedbio.2004.08.011.

Abstract

Copper-64 (T(1/2)=12.7 h; beta(+): 0.653 MeV, 17.4%; beta(-): 0.578 MeV, 39%) has applications in positron emission tomography (PET) imaging and radiotherapy, and is conveniently produced on a biomedical cyclotron. Tetraazamacrocyclic ligands are the most widely used bifunctional chelators (BFCs) for attaching copper radionuclides to antibodies and peptides due to their relatively high kinetic stability. In this paper, we evaluated three monooxo-tetraazamacrocyclic ligands with different ring sizes and oxo group positions. H1 [1,4,7,10-tetraazacyclotridecan-11-one], H2 [1,4,8,11-tetraazacyclotetradecan-5-one] and H3 [1,4,7,10-tetraazacyclotridecan-2-one] were radiolabeled with (64)Cu in high radiochemical yields under mild conditions. The three (64)Cu-labeled complexes are all +1 charged, as determined by their electrophoretic mobility. While they demonstrated >95% stability in rat serum out to 24 h, both biodistribution and microPET imaging studies revealed high uptake and long retention of the compounds in major clearance organs (e.g., blood, liver and kidney), which suggests that (64)Cu dissociated from the complexes in vivo. Of the three complexes, (64)Cu-2(+), which has a cyclam backbone (1,4,8,11-tetraazacyclotetradecane), exhibited the lowest nontarget organ accumulation. The data from these studies may invalidate the candidacy of the monooxo-tetraazamacrocyclics as BFCs for copper radiopharmaceuticals. However, the data presented here suggest that neutral or negatively charged Cu(II) complexes of tetraazamacrocyclic ligands with a cyclam backbone (tetradecane) are optimal for copper radiopharmaceutical applications.

摘要

铜 - 64(半衰期(T_{1/2}=12.7)小时;正电子发射(\beta^+):0.653兆电子伏特,占比17.4%;电子发射(\beta^-):0.578兆电子伏特,占比39%)在正电子发射断层扫描(PET)成像和放射治疗中具有应用价值,并且可以在生物医学回旋加速器上方便地制备。四氮杂大环配体是用于将铜放射性核素连接到抗体和肽上的最广泛使用的双功能螯合剂(BFC),因为它们具有相对较高的动力学稳定性。在本文中,我们评估了三种具有不同环大小和氧代基团位置的单氧代 - 四氮杂大环配体。H1 [1,4,7,10 - 四氮杂环十三烷 - 11 - 酮]、H2 [1,4,8,11 - 四氮杂环十四烷 - 5 - 酮]和H3 [1,4,7,10 - 四氮杂环十三烷 - 2 - 酮]在温和条件下以高放射化学产率用(^{64}Cu)进行放射性标记。通过电泳迁移率测定,这三种(^{64}Cu)标记的配合物均带 +1电荷。虽然它们在大鼠血清中24小时内显示出>95%的稳定性,但生物分布和微型PET成像研究均表明这些化合物在主要清除器官(如血液、肝脏和肾脏)中有高摄取和长时间滞留,这表明(^{64}Cu)在体内从配合物中解离。在这三种配合物中,具有环胺骨架(1,4,8,11 - 四氮杂环十四烷)的(^{64}Cu - 2^+)表现出最低的非靶器官积累。这些研究的数据可能使单氧代 - 四氮杂大环化合物作为铜放射性药物的双功能螯合剂的候选资格无效。然而,本文提供的数据表明,具有环胺骨架(十四烷)的四氮杂大环配体的中性或带负电荷的铜(II)配合物对于铜放射性药物应用是最佳的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验