Suppr超能文献

滥用药物导致毒性和成瘾的统一机制:电子转移与活性氧

Unifying mechanism for toxicity and addiction by abused drugs: electron transfer and reactive oxygen species.

作者信息

Kovacic Peter, Cooksy Andrew L

机构信息

Department of Chemistry, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-1030, USA.

出版信息

Med Hypotheses. 2005;64(2):357-66. doi: 10.1016/j.mehy.2004.07.021.

Abstract

Abused drugs are of grave concern throughout the world for a variety of reasons. Although impressive advances have been made, there are many unknown mechanistic aspects. This report presents a novel hypothesis based on a unifying theme for action of the major classes of abused drugs, in addition to commonly abused therapeutic drugs. The approach is based on electron transfer (ET), reactive oxygen species (ROS), and oxidative stress (OS). It is significant that physiologically active substances generally incorporate ET functionalities, either per se, or more usually in their metabolites. In order to achieve ET in vivo, the reduction potential must be more positive than -0.5 V, which is the case for metabolites of abused drugs, except for special cases. Since the ET process is catalytic, only small quantities of agent are needed for generation of large amounts of ROS during redox cycyling. Bioaction with cellular materials could entail ET alone or participation of ROS. In the abused category, among the main classes of ET functionalities are quinones and iminiums, with alpha-dicarbonyl and nitroxyl radical being rarer. Nicotine yields nicotine iminium, myosmine iminium, and DNA base iminium via alkylation by a metabolic nitrosamine. In the case of alcohol, diacetyl (an alpha-dicarbonyl) is formed, which can lead to conjugated imine (or iminium) by condensation with pri-amine of protein. Phencyclidine is unusual since the iminium product is non-conjugated. However, data indicate that the conformation present at the binding site can accommodate delocalization of the derived radical. For cocaine, various metabolites may play a role: iminium, nitroxyl radical, nitrosonium and formaldehyde. Dealkylation of the ether moiety of ecstasy provides a catechol function capable of redox cycling with the o-quinone partner. Amphetamine and methamphetamine also appear to function by way of the catechol route, as well as morphine and heroin. Tetrahydrocannabinol produces an epoxide, a functionality capable of DNA base alkylation accompanied by ROS. LSD undergoes oxidation to a phenol which may be a quinone precursor. Therapeutic drugs display the indicated metabolic relationships: benzodiazepines, iminium; phenytoin, quinone; phenobarbital, catechol; aspirin, catechol and hydroquinone; acetaminophen, iminoquinone. Extensive evidence exists for formation of ROS, organ injury by OS, depletion of AOs, and protection by AOs for the various drugs. There is also discussion of computational approaches, addiction mechanism and prevention, and health promotion.

摘要

由于多种原因,滥用药物在全球范围内备受关注。尽管已经取得了令人瞩目的进展,但仍存在许多未知的机制方面。本报告提出了一种基于统一主题的新假说,该主题涉及主要类别的滥用药物以及常见滥用的治疗药物的作用机制。该方法基于电子转移(ET)、活性氧(ROS)和氧化应激(OS)。重要的是,生理活性物质通常本身或更常见的是在其代谢物中包含ET功能。为了在体内实现ET,还原电位必须比-0.5 V更正,除特殊情况外,滥用药物的代谢物就是这种情况。由于ET过程具有催化性,在氧化还原循环过程中,只需少量试剂就能产生大量ROS。与细胞物质的生物作用可能仅涉及ET,也可能涉及ROS的参与。在滥用药物类别中,ET功能的主要类别包括醌和亚胺离子,α-二羰基和硝酰自由基则较为少见。尼古丁通过代谢亚硝胺的烷基化作用产生尼古丁亚胺离子、麦斯明亚胺离子和DNA碱基亚胺离子。就酒精而言,会形成二乙酰(一种α-二羰基),它可通过与蛋白质的伯胺缩合生成共轭亚胺(或亚胺离子)。苯环己哌啶则不同寻常,因为其亚胺离子产物是非共轭的。然而,数据表明结合位点处的构象能够容纳衍生自由基的离域。对于可卡因,各种代谢物可能发挥作用:亚胺离子、硝酰自由基、亚硝基阳离子和甲醛。摇头丸醚部分的脱烷基作用提供了一种邻苯二酚功能,能够与邻醌伙伴进行氧化还原循环。安非他明和甲基安非他明似乎也通过邻苯二酚途径发挥作用,吗啡和海洛因也是如此。四氢大麻酚产生一种环氧化物,该功能能够伴随ROS进行DNA碱基烷基化。麦角酸二乙酰胺会氧化为一种酚,它可能是醌的前体。治疗药物呈现出所示的代谢关系:苯二氮卓类药物产生亚胺离子;苯妥英产生醌;苯巴比妥产生邻苯二酚;阿司匹林产生邻苯二酚和对苯二酚;对乙酰氨基酚产生亚胺醌。对于各种药物,有大量证据表明ROS的形成、OS导致的器官损伤、抗氧化剂(AO)的消耗以及AO的保护作用。还讨论了计算方法、成瘾机制与预防以及健康促进等内容。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验