Wang X, Zhang Y, Peng Y, Hutchinson M R, Rice K C, Yin H, Watkins L R
Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
Br J Pharmacol. 2016 Mar;173(5):856-69. doi: 10.1111/bph.13394. Epub 2016 Feb 4.
The toll-like receptor TLR4 is involved in neuropathic pain and in drug reward and reinforcement. The opioid inactive isomers (+)-naltrexone and (+)-naloxone act as TLR4 antagonists, reversing neuropathic pain and reducing opioid and cocaine reward and reinforcement. However, how these agents modulate TLR4 signalling is not clear. Here, we have elucidated the molecular mechanism of (+)-naltrexone and (+)-naloxone on TLR4 signalling.
BV-2 mouse microglial cell line, primary rat microglia and primary rat peritoneal macrophages were treated with LPS and TLR4 signalling inhibitors. Effects were measured using Western blotting, luciferase reporter assays, fluorescence microscopy and ELISA KEY RESULTS: (+)-Naltrexone and (+)-naloxone were equi-potent inhibitors of the LPS-induced TLR4 downstream signalling and induction of the pro-inflammatory factors NO and TNF-α. Similarly, (+)-naltrexone or (+)-naloxone inhibited production of reactive oxygen species and increased microglial phagocytosis, induced by LPS. However, (+)-naltrexone and (+)-naloxone did not directly inhibit the increased production of IL-1β, induced by LPS. The drug interaction of (+)-naloxone and (+)-naltrexone was additive. (+)-Naltrexone or (+)-naloxone inhibited LPS-induced activation of IFN regulatory factor 3 and production of IFN-β. However, they did not inhibit TLR4 signalling via the activation of either NF-κB, p38 or JNK in these cellular models.
(+)-Naltrexone and (+)-naloxone were TRIF-IFN regulatory factor 3 axis-biased TLR4 antagonists. They blocked TLR4 downstream signalling leading to NO, TNF-α and reactive oxygen species. This pattern may explain, at least in part, the in vivo therapeutic effects of (+)-naltrexone and (+)-naloxone.
Toll样受体TLR4参与神经性疼痛以及药物奖赏与强化过程。阿片类药物无活性的异构体(+)-纳曲酮和(+)-纳洛酮可作为TLR4拮抗剂,逆转神经性疼痛,并减少阿片类药物和可卡因的奖赏与强化作用。然而,这些药物如何调节TLR4信号传导尚不清楚。在此,我们阐明了(+)-纳曲酮和(+)-纳洛酮对TLR4信号传导的分子机制。
用脂多糖(LPS)和TLR4信号传导抑制剂处理BV-2小鼠小胶质细胞系、原代大鼠小胶质细胞和原代大鼠腹腔巨噬细胞。采用蛋白质免疫印迹法、荧光素酶报告基因检测法、荧光显微镜检查法和酶联免疫吸附测定法测量相关效应。
(+)-纳曲酮和(+)-纳洛酮是LPS诱导的TLR4下游信号传导以及促炎因子一氧化氮(NO)和肿瘤坏死因子-α(TNF-α)诱导的等效抑制剂。同样,(+)-纳曲酮或(+)-纳洛酮可抑制LPS诱导的活性氧生成,并增强小胶质细胞吞噬作用。然而,(+)-纳曲酮和(+)-纳洛酮并不直接抑制LPS诱导的白细胞介素-1β(IL-1β)生成增加。(+)-纳洛酮和(+)-纳曲酮的药物相互作用具有相加性。(+)-纳曲酮或(+)-纳洛酮可抑制LPS诱导的干扰素调节因子3(IRF3)激活和干扰素-β(IFN-β)生成。然而,在这些细胞模型中,它们并非通过激活核因子κB(NF-κB)、p38或应激活化蛋白激酶(JNK)来抑制TLR4信号传导。
(+)-纳曲酮和(+)-纳洛酮是偏向于TIR结构域衔接蛋白诱导干扰素-β(TRIF)-干扰素调节因子3轴的TLR4拮抗剂。它们阻断导致NO、TNF-α和活性氧生成的TLR4下游信号传导。这种模式可能至少部分解释了(+)-纳曲酮和(+)-纳洛酮的体内治疗效果。