Stec B, Markman O, Rao U, Heffron G, Henderson S, Vernon L P, Brumfeld V, Teeter M M
Department of Chemistry, University of Texas at El Paso, 500 W. University Ave, El Paso, TX 79968, USA.
J Pept Res. 2004 Dec;64(6):210-24. doi: 10.1111/j.1399-3011.2004.00187.x.
We propose a molecular model for phospholipid membrane lysis by the ubiquitous plant toxins called thionins. Membrane lysis constitutes the first major effect exerted by these toxins that initiates a cascade of cytoplasmic events leading to cell death. X-ray crystallography, solution nuclear magnetic resonance (NMR) studies, small angle X-ray scattering and fluorescence spectroscopy provide evidence for the mechanism of membrane lysis. In the crystal structures of two thionins in the family, alpha(1)- and beta-purothionins (MW: approximately 4.8 kDa), a phosphate ion and a glycerol molecule are modeled bound to the protein. (31)P NMR experiments on the desalted toxins confirm phosphate-ion binding in solution. Evidence also comes from phospholipid partition experiments with radiolabeled toxins and with fluorescent phospholipids. This data permit a model of the phospholipid-protein complex to be built. Further, NMR experiments, one-dimensional (1D)- and two-dimensional (2D)-total correlation spectroscopy (TOCSY), carried out on the model compounds glycerol-3-phosphate (G3P) and short chain phospholipids, supported the predicted mode of phospholipid binding. The toxins' high positive charge, which renders them extremely soluble (>300 mg/mL), and the phospholipid-binding specificity suggest the toxin-membrane interaction is mediated by binding to patches of negatively charged phospholipids [phosphatidic acid (PA) or phosphatidyl serine (PS)] and their subsequent withdrawal. The formation of proteolipid complexes causes solubilization of the membrane and its lysis. The model suggests that the oligomerization may play a role in toxin's activation process and provides insight into the structural principles of protein-membrane interactions.
我们提出了一种分子模型,用于解释被称为硫堇的普遍存在的植物毒素对磷脂膜的裂解作用。膜裂解是这些毒素产生的首个主要效应,它引发了一系列导致细胞死亡的细胞质事件。X射线晶体学、溶液核磁共振(NMR)研究、小角X射线散射和荧光光谱学为膜裂解机制提供了证据。在该家族的两种硫堇——α(1)-和β-麦胚硫堇(分子量:约4.8 kDa)的晶体结构中,模拟了一个磷酸根离子和一个甘油分子与蛋白质结合。对脱盐毒素进行的³¹P NMR实验证实了溶液中磷酸根离子的结合。证据还来自使用放射性标记毒素和荧光磷脂的磷脂分配实验。这些数据使得能够构建磷脂-蛋白质复合物模型。此外,对模型化合物甘油-3-磷酸(G3P)和短链磷脂进行的一维(1D)和二维(2D)全相关谱(TOCSY)NMR实验,支持了预测的磷脂结合模式。毒素的高正电荷使其极易溶解(>300 mg/mL),且磷脂结合特异性表明毒素与膜的相互作用是通过与带负电荷的磷脂斑块[磷脂酸(PA)或磷脂酰丝氨酸(PS)]结合并随后脱离来介导的。蛋白脂质复合物的形成导致膜溶解及其裂解。该模型表明寡聚化可能在毒素的激活过程中起作用,并为蛋白质-膜相互作用的结构原理提供了见解。