Suppr超能文献

重组人异戊二烯基半胱氨酸羧基甲基转移酶(Icmt)的动力学机制分析。

Analysis of the kinetic mechanism of recombinant human isoprenylcysteine carboxylmethyltransferase (Icmt).

作者信息

Baron Rudi A, Casey Patrick J

机构信息

Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

BMC Biochem. 2004 Dec 29;5:19. doi: 10.1186/1471-2091-5-19.

Abstract

BACKGROUND

Isoprenylcysteine carboxyl methyltransferase (Icmt) is the third of three enzymes that posttranslationally modify proteins that contain C-terminal CaaX motifs. The processing of CaaX proteins through this so-called prenylation pathway via a route initiated by addition of an isoprenoid lipid is required for both membrane targeting and function of the proteins. The involvement of many CaaX proteins such as Ras GTPases in oncogenesis and other aberrant proliferative disorders has led to the targeting of the enzymes involved in their processing for therapeutic development, necessitating a detailed understanding of the mechanisms of the enzymes.

RESULTS

In this study, we have investigated the kinetic mechanism of recombinant human Icmt. In the reaction catalyzed by Icmt, S-adenosyl-L-methionine (AdoMet) provides the methyl group that is transferred to the second substrate, the C-terminal isoprenylated cysteine residue of a CaaX protein, thereby generating a C-terminal prenylcysteine methyl ester on the protein. To facilitate the kinetic analysis of Icmt, we synthesized a new small molecule substrate of the enzyme, biotin-S-farnesyl-L-cysteine (BFC). Initial kinetic analysis of Icmt suggested a sequential mechanism for the enzyme that was further analyzed using a dead end competitive inhibitor, S-farnesylthioacetic acid (FTA). Inhibition by FTA was competitive with respect to BFC and uncompetitive with respect to AdoMet, indicating an ordered mechanism with SAM binding first. To investigate the order of product dissociation, product inhibition studies were undertaken with S-adenosyl-L-homocysteine (AdoHcy) and the N-acetyl-S-farnesyl-L-cysteine methylester (AFCME). This analysis indicated that AdoHcy is a competitive inhibitor with respect to AdoMet, while AFCME shows a noncompetitive inhibition with respect to BFC and a mixed-type inhibition with respect to AdoMet. These studies established that AdoHcy is the final product released, and that BFC and AFCME bind to different forms of the enzyme.

CONCLUSIONS

These studies establish that catalysis by human Icmt proceeds through an ordered sequential mechanism and provide a kinetic framework for analysis of specific inhibitors of this key enzyme.

摘要

背景

异戊二烯基半胱氨酸羧基甲基转移酶(Icmt)是三种对含有C末端CaaX基序的蛋白质进行翻译后修饰的酶中的第三种。通过这种所谓的异戊二烯化途径,经由添加类异戊二烯脂质启动的路线对CaaX蛋白进行加工,对于蛋白质的膜靶向和功能而言是必需的。许多CaaX蛋白,如Ras GTP酶参与肿瘤发生和其他异常增殖性疾病,这导致了针对其加工过程中涉及的酶进行治疗性开发,因此需要详细了解这些酶的作用机制。

结果

在本研究中,我们研究了重组人Icmt的动力学机制。在Icmt催化的反应中,S-腺苷-L-甲硫氨酸(AdoMet)提供甲基,该甲基转移至第二种底物,即CaaX蛋白的C末端异戊二烯化半胱氨酸残基,从而在蛋白质上生成C末端异戊烯基半胱氨酸甲酯。为便于对Icmt进行动力学分析,我们合成了该酶的一种新的小分子底物,生物素-S-法尼基-L-半胱氨酸(BFC)。Icmt的初始动力学分析表明该酶的反应机制为有序机制,使用终产物竞争性抑制剂S-法尼基硫代乙酸(FTA)进行了进一步分析。FTA的抑制作用相对于BFC是竞争性的,相对于AdoMet是非竞争性的,表明是一种先结合SAM的有序机制。为研究产物解离的顺序,用S-腺苷-L-高半胱氨酸(AdoHcy)和N-乙酰-S-法尼基-L-半胱氨酸甲酯(AFCME)进行了产物抑制研究。该分析表明AdoHcy相对于AdoMet是竞争性抑制剂,而AFCME相对于BFC表现出非竞争性抑制,相对于AdoMet表现出混合型抑制。这些研究确定AdoHcy是最终释放的产物,并且BFC和AFCME与酶的不同形式结合。

结论

这些研究确定人Icmt的催化作用通过有序顺序机制进行,并为分析该关键酶的特异性抑制剂提供了动力学框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d220/545952/dec940cbdefc/1471-2091-5-19-1.jpg

相似文献

2
Kinetic mechanism of isoprenylated protein methyltransferase.
J Biol Chem. 1992 May 15;267(14):9547-51.
3
9 Structure and function of isoprenylcysteine carboxylmethyltransferase (Icmt): A key enzyme in CaaX processing.
Enzymes. 2006;24:245-72. doi: 10.1016/S1874-6047(06)80011-9. Epub 2007 Jun 4.
5
Solid-phase synthesis of Biotin-S-Farnesyl-L-Cysteine, a surrogate substrate for isoprenylcysteine Carboxylmethyltransferase (ICMT).
Bioorg Med Chem Lett. 2013 Oct 15;23(20):5671-3. doi: 10.1016/j.bmcl.2013.08.022. Epub 2013 Aug 12.
7
The isoprenoid substrate specificity of isoprenylcysteine carboxylmethyltransferase: development of novel inhibitors.
J Biol Chem. 2005 Aug 19;280(33):29454-61. doi: 10.1074/jbc.M504982200. Epub 2005 Jun 9.
8
Atomic structure of the eukaryotic intramembrane RAS methyltransferase ICMT.
Nature. 2018 Jan 25;553(7689):526-529. doi: 10.1038/nature25439. Epub 2018 Jan 17.
10
A small-molecule inhibitor of isoprenylcysteine carboxyl methyltransferase with antitumor activity in cancer cells.
Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4336-41. doi: 10.1073/pnas.0408107102.

引用本文的文献

2
Atomic structure of the eukaryotic intramembrane RAS methyltransferase ICMT.
Nature. 2018 Jan 25;553(7689):526-529. doi: 10.1038/nature25439. Epub 2018 Jan 17.
3
Exploration of GGTase-I substrate requirements. Part 2: Synthesis and biochemical analysis of novel saturated geranylgeranyl diphosphate analogs.
Bioorg Med Chem Lett. 2016 Aug 1;26(15):3503-7. doi: 10.1016/j.bmcl.2016.06.035. Epub 2016 Jun 15.
5
Control of RhoA methylation by carboxylesterase I.
J Biol Chem. 2013 Jun 28;288(26):19177-83. doi: 10.1074/jbc.M113.467407. Epub 2013 May 8.
6
S-adenosyl-L-homocysteine hydrolase and methylation disorders: yeast as a model system.
Biochim Biophys Acta. 2013 Jan;1832(1):204-15. doi: 10.1016/j.bbadis.2012.09.007. Epub 2012 Sep 24.
7
Protein farnesylation and disease.
J Inherit Metab Dis. 2012 Sep;35(5):917-26. doi: 10.1007/s10545-011-9445-y. Epub 2012 Feb 4.
8
Functional oligomerization of the Saccharomyces cerevisiae isoprenylcysteine carboxyl methyltransferase, Ste14p.
J Biol Chem. 2010 Apr 30;285(18):13380-7. doi: 10.1074/jbc.M109.061366. Epub 2010 Mar 3.
9
Role of isoprenylcysteine carboxylmethyltransferase-catalyzed methylation in Rho function and migration.
J Biol Chem. 2009 Oct 9;284(41):27964-27973. doi: 10.1074/jbc.M109.025296. Epub 2009 Aug 3.
10
Topology of mammalian isoprenylcysteine carboxyl methyltransferase determined in live cells with a fluorescent probe.
Mol Cell Biol. 2009 Apr;29(7):1826-33. doi: 10.1128/MCB.01719-08. Epub 2009 Jan 21.

本文引用的文献

1
Inactivation of Icmt inhibits transformation by oncogenic K-Ras and B-Raf.
J Clin Invest. 2004 Feb;113(4):539-50. doi: 10.1172/JCI18829.
2
Fighting cancer by disrupting C-terminal methylation of signaling proteins.
J Clin Invest. 2004 Feb;113(4):513-5. doi: 10.1172/JCI21059.
3
Targeting Ras signaling through inhibition of carboxyl methylation: an unexpected property of methotrexate.
Proc Natl Acad Sci U S A. 2003 May 27;100(11):6529-34. doi: 10.1073/pnas.1135239100. Epub 2003 May 15.
4
Isoprenylcysteine carboxyl methyltransferase deficiency in mice.
J Biol Chem. 2001 Feb 23;276(8):5841-5. doi: 10.1074/jbc.C000831200. Epub 2000 Dec 19.
8
Cloning and characterization of a mammalian prenyl protein-specific protease.
J Biol Chem. 1999 Mar 26;274(13):8379-82. doi: 10.1074/jbc.274.13.8379.
9
Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum.
J Biol Chem. 1998 Jun 12;273(24):15030-4. doi: 10.1074/jbc.273.24.15030.
10
CaaX converting enzymes.
Curr Opin Lipidol. 1998 Apr;9(2):99-102. doi: 10.1097/00041433-199804000-00004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验