Li Jian Hua, Choe Han, Wang Ai Fen, Maiti Kaushik, Wang Chengbing, Salam Abdus, Chun Sang Young, Lee Won-Kyo, Kim Kyungjin, Kwon Hyuk Bang, Seong Jae Young
Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea.
Mol Pharmacol. 2005 Apr;67(4):1099-110. doi: 10.1124/mol.104.004887. Epub 2005 Jan 5.
Mammalian type I and II gonadotropin-releasing hormone (GnRH) receptors (GnRHRs) show differential ligand preference for GnRH-I and GnRH-II, respectively. Using a variety of chimeric receptors based on green monkey GnRHR-2 (gmGnRHR-2), a representative type II GnRHR, and rat GnRHR, a representative type I GnRHR, this study elucidated specific domains responsible for this ligand selectivity. A chimeric gmGnRHR-2 with the extracellular loop 3 (EL3) and EL3-proximal transmembrane helix 7 (TMH7) of rat GnRHR showed a great increase in ligand sensitivity to GnRH-I but not to GnRH-II. Point-mutation studies indicate that four amino acids, Leu/Phe(7.38), Leu/Phe(7.43), Ala/Pro(7.46), and Pro/Cys(7.47) in TMH7 are critical for ligand selectivity as well as receptor conformation. Furthermore, a combinatory mutation (Pro(7.31)-Pro(7.32)-Ser(7.33) motif to Ser-Glu-Pro in EL3 and Leu(7.38), Leu(7.43), Ala(7.46), and Pro(7.47) to those of rat GnRHR) in gmGnRH-2 exhibited an approximately 500-fold increased sensitivity to GnRH-I, indicating that these residues are critical for discriminating GnRH-II from GnRH-I. [Trp(7)]GnRH-I and [Trp(8)]GnRH-I but not [His(5)]GnRH-I exhibit a higher potency in activating wild-type gmGnRHR-2 than native GnRH-I, indicating that amino acids at positions 7 and 8 of GnRHs are more important than position 5 for differential recognition by type I and type II GnRHRs. As a whole, these data suggest a molecular coevolution of ligands and their receptors and facilitate the understanding of the molecular interaction between GnRHs and their cognate receptors.
哺乳动物的I型和II型促性腺激素释放激素(GnRH)受体(GnRHRs)分别对GnRH-I和GnRH-II表现出不同的配体偏好。本研究使用了多种基于绿猴GnRHR-2(gmGnRHR-2,一种代表性的II型GnRHR)和大鼠GnRHR(一种代表性的I型GnRHR)的嵌合受体,阐明了导致这种配体选择性的特定结构域。一种具有大鼠GnRHR细胞外环3(EL3)和EL3近端跨膜螺旋7(TMH7)的嵌合gmGnRHR-2对GnRH-I的配体敏感性大幅增加,但对GnRH-II不敏感。点突变研究表明,TMH7中的四个氨基酸Leu/Phe(7.38)、Leu/Phe(7.43)、Ala/Pro(7.46)和Pro/Cys(7.47)对配体选择性以及受体构象至关重要。此外,gmGnRH-2中的组合突变(EL3中的Pro(7.31)-Pro(7.32)-Ser(7.33)基序突变为Ser-Glu-Pro,以及Leu(7.38)、Leu(7.43)、Ala(7.46)和Pro(7.47)突变为大鼠GnRHR的相应氨基酸)对GnRH-I的敏感性提高了约500倍,表明这些残基对于区分GnRH-II和GnRH-I至关重要。[Trp(7)]GnRH-I和[Trp(8)]GnRH-I而非[His(5)]GnRH-I在激活野生型gmGnRHR-2方面比天然GnRH-I具有更高的效力,表明GnRHs第7和8位的氨基酸在I型和II型GnRHRs的差异识别中比第5位更重要。总体而言,这些数据表明配体及其受体的分子协同进化,并有助于理解GnRHs与其同源受体之间的分子相互作用。