McDonough Paul, Behnke Brad J, Padilla Danielle J, Musch Timothy I, Poole David C
Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75309-9034, USA.
J Physiol. 2005 Mar 15;563(Pt 3):903-13. doi: 10.1113/jphysiol.2004.079533. Epub 2005 Jan 6.
In response to an elevated metabolic rate ((.-)V(O(2)), increased microvascular blood-muscle O(2) flux is the product of both augmented O(2) delivery ((.-)Q(O(2)), and fractional O(2) extraction. Whole body and exercising limb measurements demonstrate that (.-)Q(O(2) and fractional O(2) extraction increase as linear and hyperbolic functions, respectively, of (.-)V(O(2). Given the presence of disparate vascular control mechanisms among different muscle fibre types, we tested the hypothesis that, in response to muscle contractions, (.-)Q(O(2) would be lower and fractional O(2) extraction (as assessed via microvascular O(2) pressure, P(mvO(2))) higher in fast- versus slow-twitch muscles. Radiolabelled microsphere and phosphorescence quenching techniques were used to measure (.-)Q(O(2) and P(mvO(2)), respectively at rest and across the transition to 1 Hz twitch contractions at low (Lo, 2.5 V) and high intensities (Hi, 4.5 V) in rat (n = 20) soleus (Sol, slow-twitch, type I), mixed gastrocnemius (MG, fast-twitch, type IIa) and white gastrocnemius (WG, fast-twitch, type IIb) muscle. At rest and for Lo and Hi (steady-state values) transitions, P(mvO(2)) was lower (all P < 0.05) in MG (mmHg: rest, 22.5 +/- 1.0; Lo, 15.3 +/- 1.3; Hi, 10.2 +/- 1.6) and WG (mmHg: rest, 19.0 +/- 1.3; Lo, 12.2 +/- 1.1; Hi, 9.9 +/- 1.1) than in Sol (rest, 33.1 +/- 3.2 mmHg; Lo, 19.0 +/- 2.3 mmHg; Hi, 18.7 +/- 1.8 mmHg), despite lower (.-)V(O(2) and (.-)Q(O(2) in MG and WG under each set of conditions. These data suggest that during submaximal metabolic rates, the relationship between (.-)Q(O(2) and O(2) extraction is dependent on fibre type (at least in the muscles studied herein), such that muscles comprised of fast-twitch fibres display a greater fractional O(2) extraction (i.e. lower P(mvO(2))) than their slow-twitch counterparts. These results also indicate that the greater sustained P(mvO(2)) in Sol may be important for ensuring high blood-myocyte O(2) flux and therefore a greater oxidative contribution to energetic requirements.
为应对代谢率升高((.-)V(O₂)),微血管血液 - 肌肉氧通量增加是氧输送增加((.-)Q(O₂))和氧分数提取的共同结果。全身和运动肢体测量表明,(.-)Q(O₂)和氧分数提取分别作为(.-)V(O₂)的线性和双曲线函数增加。鉴于不同肌纤维类型之间存在不同的血管控制机制,我们检验了以下假设:响应肌肉收缩,快肌与慢肌相比,(.-)Q(O₂)会更低,氧分数提取(通过微血管氧压P(mvO₂)评估)会更高。使用放射性标记微球和磷光猝灭技术分别在大鼠(n = 20)比目鱼肌(Sol,慢肌,I型)、混合腓肠肌(MG,快肌,IIa型)和白色腓肠肌(WG,快肌,IIb型)处于静息状态以及从静息过渡到1 Hz抽搐收缩的低强度(Lo,2.5 V)和高强度(Hi,4.5 V)时测量(.-)Q(O₂)和P(mvO₂)。在静息状态以及Lo和Hi(稳态值)过渡时,MG(mmHg:静息,22.5±1.0;Lo,15.3±1.3;Hi,10.2±l.6)和WG(mmHg:静息,19.0±1.3;Lo,12.2±1.1;Hi,9.9±1.1)中的P(mvO₂)低于Sol(静息,33.1±3.2 mmHg;Lo,19.0±2.3 mmHg;Hi,18.7±1.8 mmHg),尽管在每组条件下MG和WG中的(.-)V(O₂)和(.-)Q(O₂)较低。这些数据表明,在次最大代谢率期间,(.-)Q(O₂)与氧提取之间的关系取决于纤维类型(至少在本文研究的肌肉中),使得由快肌纤维组成的肌肉比其慢肌对应物表现出更大的氧分数提取(即更低的P(mvO₂))。这些结果还表明,Sol中更高的持续P(mvO₂)可能对于确保高血液 - 心肌细胞氧通量以及因此对能量需求的更大氧化贡献很重要。