Suppr超能文献

叶酸生物合成对青枯雷尔氏菌在细胞间隙增殖的作用。

Contribution of folate biosynthesis to Ralstonia solanacearum proliferation in intercellular spaces.

作者信息

Shinohara Rena, Kanda Ayami, Ohnishi Kouhei, Kiba Akinori, Hikichi Yasufumi

机构信息

Laboratory of Plant Pathology and Biotechnology, Kochi University, 200 Monobe, Nankoku, Kochi 783-8502, Japan.

出版信息

Appl Environ Microbiol. 2005 Jan;71(1):417-22. doi: 10.1128/AEM.71.1.417-422.2005.

Abstract

The vigorous proliferation of Ralstonia solanacearum OE1-1 in host intercellular spaces after the invasion of host plants is necessary for the virulence of this bacterium. A folate auxotroph, RM, in which a mini-Tn5 transposon was inserted into pabB encoding para-aminobenzoate synthase component I, lost its ability to vigorously proliferate in intercellular spaces along with its systemic infectivity and virulence after inoculation into roots and infiltration into leaves of tobacco plants. Complementation of RM with the pabB gene allowed the mutant to multiply in intercellular spaces and to cause disease. In tobacco plants that were pretreated with folate, RM was able to vigorously proliferate in the intercellular spaces and cause disease. Interestingly, when it was inoculated through cut stems, the mutant multiplied in the plants and was virulent. Moreover, the mutant multiplied well in stem fluids but not in intercellular fluids, suggesting that the folate concentration within intercellular spaces may be a limiting factor for bacterial proliferation. Therefore, folate biosynthesis contributes to the vigorous proliferation of bacteria in intercellular spaces and leads to systemic infectivity resulting in virulence.

摘要

青枯雷尔氏菌OE1-1在侵入寄主植物后于寄主细胞间隙中旺盛增殖,这对于该细菌的毒性至关重要。一个叶酸营养缺陷型菌株RM,其mini-Tn5转座子插入了编码对氨基苯甲酸合酶组分I的pabB基因中,在接种到烟草根部并浸润到叶片后,它失去了在细胞间隙中旺盛增殖的能力以及系统感染性和毒性。用pabB基因对RM进行互补,可使突变体在细胞间隙中增殖并引发病害。在用叶酸预处理过的烟草植株中,RM能够在细胞间隙中旺盛增殖并引发病害。有趣的是,当通过茎部切口接种时,该突变体在植株中增殖并具有毒性。此外,该突变体在茎液中增殖良好,但在细胞间隙液中则不然,这表明细胞间隙中的叶酸浓度可能是细菌增殖的限制因素。因此,叶酸生物合成有助于细菌在细胞间隙中旺盛增殖,并导致系统感染性从而产生毒性。

相似文献

1
Contribution of folate biosynthesis to Ralstonia solanacearum proliferation in intercellular spaces.
Appl Environ Microbiol. 2005 Jan;71(1):417-22. doi: 10.1128/AEM.71.1.417-422.2005.
3
An amino acid substitution at position 740 in sigma70 of Ralstonia solanacearum strain OE1-1 affects its in planta growth.
Appl Environ Microbiol. 2008 Sep;74(18):5841-4. doi: 10.1128/AEM.01099-08. Epub 2008 Jul 18.
4
Ectopic expression of Ralstonia solanacearum effector protein PopA early in invasion results in loss of virulence.
Mol Plant Microbe Interact. 2003 May;16(5):447-55. doi: 10.1094/MPMI.2003.16.5.447.
5
Functional analysis of Ralstonia solanacearum PrhG regulating the hrp regulon in host plants.
Microbiology (Reading). 2013 Aug;159(Pt 8):1695-1704. doi: 10.1099/mic.0.067819-0. Epub 2013 May 23.
8
9
Roles of different forms of lipopolysaccharides in Ralstonia solanacearum pathogenesis.
Mol Plant Microbe Interact. 2014 May;27(5):471-8. doi: 10.1094/MPMI-08-13-0248-R.
10
[Construction of Tn5 transposon insertion mutants of Ralstonia solanacearum isolated from Pogostemon cablin].
Zhongguo Zhong Yao Za Zhi. 2019 Jan;44(1):77-81. doi: 10.19540/j.cnki.cjcmm.20181025.006.

引用本文的文献

1
One-carbon metabolism and microbial pathogenicity.
Mol Oral Microbiol. 2024 Aug;39(4):156-164. doi: 10.1111/omi.12417. Epub 2023 May 24.
2
, a Surrogate Host to Study Novel Virulence Mechanisms of Gram-Positive Bacteria, , and in Plants.
Front Plant Sci. 2022 May 10;13:876971. doi: 10.3389/fpls.2022.876971. eCollection 2022.
3
Ralfuranones contribute to mushroom-type biofilm formation by Ralstonia solanacearum strain OE1-1.
Mol Plant Pathol. 2018 Apr;19(4):975-985. doi: 10.1111/mpp.12583. Epub 2017 Oct 10.
4
Transcriptomes of during Root Colonization of .
Front Plant Sci. 2017 Mar 20;8:370. doi: 10.3389/fpls.2017.00370. eCollection 2017.
5
Understanding the Impact of Drought on Foliar and Xylem Invading Bacterial Pathogen Stress in Chickpea.
Front Plant Sci. 2016 Jun 21;7:902. doi: 10.3389/fpls.2016.00902. eCollection 2016.
8
Suppression of DS1 phosphatidic acid phosphatase confirms resistance to Ralstonia solanacearum in Nicotiana benthamiana.
PLoS One. 2013 Sep 20;8(9):e75124. doi: 10.1371/journal.pone.0075124. eCollection 2013.
9
Metabolic adaptation of Ralstonia solanacearum during plant infection: a methionine biosynthesis case study.
PLoS One. 2012;7(5):e36877. doi: 10.1371/journal.pone.0036877. Epub 2012 May 16.
10
S-glycoprotein-like protein regulates defense responses in Nicotiana plants against Ralstonia solanacearum.
Plant Physiol. 2010 Apr;152(4):2023-35. doi: 10.1104/pp.109.148189. Epub 2010 Jan 29.

本文引用的文献

1
Biology and epidemiology of bacterial wilt caused by pseudomonas solanacearum.
Annu Rev Phytopathol. 1991;29:65-87. doi: 10.1146/annurev.py.29.090191.000433.
2
Ectopic expression of Ralstonia solanacearum effector protein PopA early in invasion results in loss of virulence.
Mol Plant Microbe Interact. 2003 May;16(5):447-55. doi: 10.1094/MPMI.2003.16.5.447.
4
Synthesis and turnover of folates in plants.
Curr Opin Plant Biol. 2002 Jun;5(3):244-9. doi: 10.1016/s1369-5266(02)00249-2.
5
Genome sequence of the plant pathogen Ralstonia solanacearum.
Nature. 2002 Jan 31;415(6871):497-502. doi: 10.1038/415497a.
7
Control of Virulence and Pathogenicity Genes of Ralstonia Solanacearum by an Elaborate Sensory Network.
Annu Rev Phytopathol. 2000 Sep;38:263-292. doi: 10.1146/annurev.phyto.38.1.263.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验