Suppr超能文献

用于视频监控的基于时间相关固有图像的光照归一化

Illumination normalization with time-dependent intrinsic images for video surveillance.

作者信息

Matsushita Yasuyuki, Nishino Ko, Ikeuchi Katsushi, Sakauchi Masao

机构信息

Microsoft Research Asia, Beijing Sigma Center, Hai Dian District, Beijing, China 100080.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2004 Oct;26(10):1336-47. doi: 10.1109/TPAMI.2004.86.

Abstract

Variation in illumination conditions caused by weather, time of day, etc., makes the task difficult when building video surveillance systems of real world scenes. Especially, cast shadows produce troublesome effects, typically for object tracking from a fixed viewpoint, since it yields appearance variations of objects depending on whether they are inside or outside the shadow. In this paper, we handle such appearance variations by removing shadows in the image sequence. This can be considered as a preprocessing stage which leads to robust video surveillance. To achieve this, we propose a framework based on the idea of intrinsic images. Unlike previous methods of deriving intrinsic images, we derive time-varying reflectance images and corresponding illumination images from a sequence of images instead of assuming a single reflectance image. Using obtained illumination images, we normalize the input image sequence in terms of incident lighting distribution to eliminate shadowing effects. We also propose an illumination normalization scheme which can potentially run in real time, utilizing the illumination eigenspace, which captures the illumination variation due to weather, time of day, etc., and a shadow interpolation method based on shadow hulls. This paper describes the theory of the framework with simulation results and shows its effectiveness with object tracking results on real scene data sets.

摘要

由天气、一天中的时间等因素引起的光照条件变化,使得构建真实世界场景的视频监控系统变得困难。特别是投射阴影会产生麻烦的影响,尤其是对于从固定视角进行的目标跟踪,因为它会根据物体是在阴影内还是阴影外而产生物体外观的变化。在本文中,我们通过去除图像序列中的阴影来处理这种外观变化。这可以被视为一个预处理阶段,从而实现稳健的视频监控。为了实现这一点,我们提出了一个基于固有图像概念的框架。与之前推导固有图像的方法不同,我们从图像序列中推导随时间变化的反射率图像和相应的光照图像,而不是假设单个反射率图像。利用获得的光照图像,我们根据入射光分布对输入图像序列进行归一化,以消除阴影效果。我们还提出了一种光照归一化方案,该方案利用光照特征空间(它捕捉了由于天气、一天中的时间等因素引起的光照变化)和基于阴影外壳的阴影插值方法,有可能实时运行。本文描述了该框架的理论并给出了仿真结果,并通过在真实场景数据集上的目标跟踪结果展示了其有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验