Suppr超能文献

利用球谐函数在任意未知光照条件下从单张训练图像进行人脸识别。

Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics.

作者信息

Zhang Lei, Samaras Dimitris

机构信息

Computer Science Department, State University of New York, Stony Brook 11794-4400, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2006 Mar;28(3):351-63. doi: 10.1109/TPAMI.2006.53.

Abstract

In this paper, we propose two novel methods for face recognition under arbitrary unknown lighting by using spherical harmonics illumination representation, which require only one training image per subject and no 3D shape information. Our methods are based on the recent result which demonstrated that the set of images of a convex Lambertian object obtained under a wide variety of lighting conditions can be approximated accurately by a low-dimensional linear subspace. We provide two methods to estimate the spherical harmonic basis images spanning this space from just one image. Our first method builds the statistical model based on a collection of 2D basis images. We demonstrate that, by using the learned statistics, we can estimate the spherical harmonic basis images from just one image taken under arbitrary illumination conditions if there is no pose variation. Compared to the first method, the second method builds the statistical models directly in 3D spaces by combining the spherical harmonic illumination representation and a 3D morphable model of human faces to recover basis images from images across both poses and illuminations. After estimating the basis images, we use the same recognition scheme for both methods: we recognize the face for which there exists a weighted combination of basis images that is the closest to the test face image. We provide a series of experiments that achieve high recognition rates, under a wide range of illumination conditions, including multiple sources of illumination. Our methods achieve comparable levels of accuracy with methods that have much more onerous training data requirements. Comparison of the two methods is also provided.

摘要

在本文中,我们提出了两种新颖的方法,用于在任意未知光照条件下进行人脸识别。这两种方法利用球谐光照表示,每个主题仅需一张训练图像,且无需三维形状信息。我们的方法基于最近的一项研究成果,该成果表明,在各种光照条件下获取的凸朗伯物体的图像集可以由一个低维线性子空间精确近似。我们提供了两种方法,仅从一张图像估计跨越该空间的球谐基图像。我们的第一种方法基于一组二维基图像构建统计模型。我们证明,通过使用所学统计信息,如果不存在姿态变化,我们可以从任意光照条件下拍摄的一张图像估计球谐基图像。与第一种方法相比,第二种方法通过结合球谐光照表示和人脸的三维可变形模型,直接在三维空间中构建统计模型,以从跨姿态和光照的图像中恢复基图像。估计基图像后,我们对两种方法使用相同的识别方案:我们识别其基图像的加权组合最接近测试人脸图像的人脸。我们提供了一系列实验,在包括多个光照源在内的广泛光照条件下实现了高识别率。我们的方法与那些对训练数据要求更为苛刻的方法达到了相当的准确率水平。同时还对这两种方法进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验