Johnström Peter, Fryer Tim D, Richards Hugh K, Harris Neil G, Barret Olivier, Clark John C, Pickard John D, Davenport Anthony P
Clinical Pharmacology Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK.
Br J Pharmacol. 2005 Jan;144(1):115-22. doi: 10.1038/sj.bjp.0706064.
Our aim was to synthesise an (18)F analogue of endothelin-1 (ET-1), to dynamically image ET receptors in vivo by positron emission tomography (PET) and to elucidate the function of the ET(B) subtype as a clearing receptor in organs expressing high densities including kidney and lung.[(18)F]-ET-1 was characterised in vitro and bound with a single subnanomolar affinity (K(D)=0.43+/-0.05 nM, B(max)=27.8+/-2.1 fmol mg(-1) protein) to human left ventricle (n=4). The in vivo distribution of [(18)F]-ET-1 in anaesthetised rats was measured using a dedicated small animal PET scanner (microPET) and ex vivo analysis. Dynamic PET data demonstrated that high levels of radioligand accumulated rapidly in the lung, kidney and liver, consistent with receptor binding. The in vivo distribution correlated with the anatomical localisation of receptors detected in vitro using [(125)I]-ET-1. However, the receptor density visualised in the heart was unexpectedly low compared with that predicted from the in vitro measurements.[(18)F]-ET-1 binding in lungs could not be displaced by the ET(B) selective antagonist BQ788, in agreement with the proposed internalisation of ET-1 by ET(B) receptors. In contrast, infusion of BQ788 prior to injecting [(18)F]-ET-1 significantly reduce the amount of radioligand visualised in the ET(B) rich lung and kidney by 85% (P< 0.05, n=3) and 55% (P<0.05, n=3), respectively. Under conditions of ET(B) receptor blockade, the heart could be visualised by microPET imaging.These results suggest that clearance by ET(B) receptors in the lung and kidney prevents binding of ET-1 to receptors in the heart.
我们的目标是合成内皮素 -1(ET-1)的(18)F类似物,通过正电子发射断层扫描(PET)在体内动态成像ET受体,并阐明ET(B)亚型作为清除受体在包括肾脏和肺在内的高密度表达器官中的功能。[(18)F]-ET-1在体外进行了表征,与人左心室(n = 4)以单亚纳摩尔亲和力(K(D)= 0.43±0.05 nM,B(max)= 27.8±2.1 fmol mg(-1)蛋白质)结合。使用专用的小动物PET扫描仪(microPET)和离体分析测量了[(18)F]-ET-1在麻醉大鼠体内的分布。动态PET数据表明,高水平的放射性配体迅速在肺、肾和肝脏中积累,这与受体结合一致。体内分布与使用[(125)I]-ET-1在体外检测到的受体的解剖定位相关。然而,与体外测量预测的相比,心脏中可视化的受体密度出乎意料地低。肺中[(18)F]-ET-1的结合不能被ET(B)选择性拮抗剂BQ788取代,这与ET(B)受体介导的ET-1内化的提议一致。相反,在注射[(18)F]-ET-1之前输注BQ788可使富含ET(B)的肺和肾中可视化的放射性配体数量分别显著减少85%(P < 0.05,n = 3)和55%(P < 0.05,n = 3)。在ET(B)受体阻断的条件下,心脏可以通过microPET成像可视化。这些结果表明,肺和肾中的ET(B)受体清除作用可防止ET-1与心脏中的受体结合。