Thangudu Ratna Rajesh, Vinayagam A, Pugalenthi G, Manonmani A, Offmann B, Sowdhamini R
Laboratoire de Biochimie et Génétique Moléculaire, Université de La Réunion, La Réunion, France.
Proteins. 2005 Mar 1;58(4):866-79. doi: 10.1002/prot.20369.
Structure prediction and three-dimensional modeling of disulfide-rich systems are challenging due to the limited number of such folds in the structural databank. We exploit the stereochemical compatibility of substructures in known protein structures to accommodate disulfide bonds in predicting the structures of disulfide-rich polypeptides directly from disulfide connectivity pattern and amino acid sequence in the absence of structural homologs and any other structural information. This knowledge-based approach is illustrated using structure prediction of 40 nonredundant bioactive disulfide-rich polypeptides such as toxins, growth factors, and endothelins available in the structural databank. The polypeptide conformation could be predicted in 35 out of 40 nonredundant entries (87%). Nonhomologous templates could be identified and models could be obtained within 2 A deviation from the query in 29 peptides (72%). This procedure can be accessed from the World Wide Web (http://www.ncbs.res.in/ approximately faculty/mini/dsdbase/dsdbase.html).
由于结构数据库中富含二硫键的折叠结构数量有限,对其进行结构预测和三维建模具有挑战性。我们利用已知蛋白质结构中亚结构的立体化学兼容性,在没有结构同源物和任何其他结构信息的情况下,根据二硫键连接模式和氨基酸序列直接预测富含二硫键多肽的结构,以容纳二硫键。使用结构数据库中40种非冗余的生物活性富含二硫键多肽(如毒素、生长因子和内皮素)的结构预测来说明这种基于知识的方法。40个非冗余条目中有35个(87%)可以预测多肽构象。可以识别出非同源模板,并且在29个肽段(72%)中可以获得与查询结构偏差在2埃以内的模型。该程序可通过万维网访问(http://www.ncbs.res.in/ approximately faculty/mini/dsdbase/dsdbase.html)。