Dorywalska Magdalena, Blanchard Scott C, Gonzalez Ruben L, Kim Harold D, Chu Steven, Puglisi Joseph D
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.
Nucleic Acids Res. 2005 Jan 12;33(1):182-9. doi: 10.1093/nar/gki151. Print 2005.
Single-molecule fluorescence spectroscopy can reveal mechanistic and kinetic details that may not be observed in static structural and bulk biochemical studies of protein synthesis. One approach requires site-specific and stable attachment of fluorophores to the components of translation machinery. Fluorescent tagging of the ribosome is a prerequisite for the observation of dynamic changes in ribosomal conformation during translation using fluorescence methods. Modifications of the ribosomal particle are difficult due to its complexity and high degree of sequence and structural conservation. We have developed a general method to label specifically the prokaryotic ribosome by hybridization of fluorescent oligonucleotides to mutated ribosomal RNA. Functional, modified ribosomes can be purified as a homogenous population, and fluorescence can be monitored from labeled ribosomal complexes immobilized on a derivatized quartz surface.
单分子荧光光谱能够揭示在蛋白质合成的静态结构和整体生化研究中可能无法观察到的机制和动力学细节。一种方法要求荧光团在翻译机制的各个组分上进行位点特异性且稳定的附着。核糖体的荧光标记是使用荧光方法观察翻译过程中核糖体构象动态变化的先决条件。由于核糖体颗粒的复杂性以及高度的序列和结构保守性,对其进行修饰很困难。我们已经开发出一种通用方法,通过将荧光寡核苷酸与突变的核糖体RNA杂交来特异性标记原核核糖体。功能性的修饰核糖体可以作为同质群体进行纯化,并且可以从固定在衍生化石英表面的标记核糖体复合物中监测荧光。