Suppr超能文献

实时追踪转录-翻译偶联

Tracking transcription-translation coupling in real time.

作者信息

Qureshi Nusrat Shahin, Duss Olivier

机构信息

Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

出版信息

Nature. 2025 Jan;637(8045):487-495. doi: 10.1038/s41586-024-08308-w. Epub 2024 Dec 4.

Abstract

A central question in biology is how macromolecular machines function cooperatively. In bacteria, transcription and translation occur in the same cellular compartment, and can be physically and functionally coupled. Although high-resolution structures of the ribosome-RNA polymerase (RNAP) complex have provided initial mechanistic insights into the coupling process, we lack knowledge of how these structural snapshots are placed along a dynamic reaction trajectory. Here we reconstitute a complete and active transcription-translation system and develop multi-colour single-molecule fluorescence microscopy experiments to directly and simultaneously track transcription elongation, translation elongation and the physical and functional coupling between the ribosome and the RNAP in real time. Our data show that physical coupling between ribosome and RNAP can occur over hundreds of nucleotides of intervening mRNA by mRNA looping, a process facilitated by NusG. We detect active transcription elongation during mRNA looping and show that NusA-paused RNAPs can be activated by the ribosome by long-range physical coupling. Conversely, the ribosome slows down while colliding with the RNAP. We hereby provide an alternative explanation for how the ribosome can efficiently rescue RNAP from frequent pausing without requiring collisions by a closely trailing ribosome. Overall, our dynamic data mechanistically highlight an example of how two central macromolecular machineries, the ribosome and RNAP, can physically and functionally cooperate to optimize gene expression.

摘要

生物学中的一个核心问题是大分子机器如何协同发挥作用。在细菌中,转录和翻译发生在同一细胞区室中,并且在物理和功能上可以相互耦合。尽管核糖体 - RNA聚合酶(RNAP)复合物的高分辨率结构为耦合过程提供了初步的机制见解,但我们并不了解这些结构快照是如何沿着动态反应轨迹排列的。在这里,我们重建了一个完整且活跃的转录 - 翻译系统,并开展了多色单分子荧光显微镜实验,以实时直接且同时地追踪转录延伸、翻译延伸以及核糖体与RNAP之间的物理和功能耦合。我们的数据表明,核糖体与RNAP之间的物理耦合可以通过mRNA环化在数百个核苷酸的间隔mRNA上发生,这一过程由NusG促进。我们在mRNA环化过程中检测到了活跃的转录延伸,并表明NusA暂停的RNAP可以通过远距离物理耦合被核糖体激活。相反,核糖体在与RNAP碰撞时会减速。我们在此为核糖体如何在不需要紧密尾随的核糖体碰撞的情况下有效地将RNAP从频繁暂停中拯救出来提供了另一种解释。总体而言,我们的动态数据从机制上突出了核糖体和RNAP这两种核心大分子机器如何在物理和功能上协同作用以优化基因表达的一个例子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef15/11711091/3437a342f78c/41586_2024_8308_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验