Suppr超能文献

酵母蛋白二硫键异构酶的一种结构二硫键会使N端硫氧还蛋白结构域的活性位点二硫键不稳定。

A structural disulfide of yeast protein-disulfide isomerase destabilizes the active site disulfide of the N-terminal thioredoxin domain.

作者信息

Wilkinson Bonney, Xiao Ruoyu, Gilbert Hiram F

机构信息

Verna and Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.

出版信息

J Biol Chem. 2005 Mar 25;280(12):11483-7. doi: 10.1074/jbc.M414203200. Epub 2005 Jan 13.

Abstract

Protein-disulfide isomerase (PDI) is an essential catalyst of disulfide formation and isomerization in the eukaryotic endoplasmic reticulum. PDI has two active sites at either end of the molecule, each containing two cysteines that facilitate thiol-disulfide exchange. In addition to its four catalytic cysteines, PDI possesses two non-active site cysteines whose location and separation distance varies by organism. In higher eukaryotes, the non-active site cysteines are located in the C-terminal half of the protein sequence and are separated by 30 amino acids. In contrast, the internal cysteines of PDI from lower eukaryotes are located near the N-terminal active site and are much closer together in sequence. The function of these cysteines and the significance of their unique location in yeast PDI have been unclear. Previous data (Xiao, R., Wilkinson, B., Solovyov, A., Winther, J. R., Holmgren, A., Lundstrom-Ljung, J., and Gilbert, H. F. (2004) J. Biol. Chem. 279, 49780-49786) suggest that the internal cysteines exist as a disulfide in the endoplasmic reticulum of Saccharomyces cerevisiae. By coupling mass spectrometry with a gel-shift technique that allows us to measure the redox potentials of the PDI active sites in the presence and absence of the non-active site cysteines, we find that the non-active site cysteines form a disulfide that is stable even in a very reducing environment and demonstrate that this disulfide exists to destabilize the N-terminal active site disulfide, making it a better oxidant by 18-fold. Consistent with this finding, we show that mutating the non-active site cysteines to alanines disrupts both the oxidase and isomerase activities of PDI in vitro.

摘要

蛋白质二硫键异构酶(PDI)是真核生物内质网中二硫键形成和异构化的必需催化剂。PDI在分子的两端各有一个活性位点,每个活性位点包含两个促进硫醇-二硫键交换的半胱氨酸。除了其四个催化性半胱氨酸外,PDI还拥有两个非活性位点半胱氨酸,其位置和分隔距离因生物体而异。在高等真核生物中,非活性位点半胱氨酸位于蛋白质序列的C端一半,相隔30个氨基酸。相比之下,低等真核生物的PDI内部半胱氨酸位于N端活性位点附近,在序列上距离更近。这些半胱氨酸的功能及其在酵母PDI中独特位置的意义尚不清楚。先前的数据(Xiao, R., Wilkinson, B., Solovyov, A., Winther, J. R., Holmgren, A., Lundstrom-Ljung, J., and Gilbert, H. F. (2004) J. Biol. Chem. 279, 49780 - 49786)表明,酿酒酵母内质网中的内部半胱氨酸以二硫键形式存在。通过将质谱与一种凝胶迁移技术相结合,该技术使我们能够在有和没有非活性位点半胱氨酸的情况下测量PDI活性位点的氧化还原电位,我们发现非活性位点半胱氨酸形成了一个即使在非常还原的环境中也稳定的二硫键,并证明这个二硫键的存在是为了使N端活性位点二硫键不稳定,使其氧化能力提高18倍。与这一发现一致,我们表明将非活性位点半胱氨酸突变为丙氨酸会破坏体外PDI的氧化酶和异构酶活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验