Suppr超能文献

两种蛋白二硫键异构酶亚组协同作用催化氧化蛋白质折叠。

Two protein disulfide isomerase subgroups work synergistically in catalyzing oxidative protein folding.

机构信息

State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education & College of Life Sciences, Northwest University, Xi'an, 710069, China.

出版信息

Plant Physiol. 2022 Jan 20;188(1):241-254. doi: 10.1093/plphys/kiab457.

Abstract

Disulfide bonds play essential roles in the folding of secretory and plasma membrane proteins in the endoplasmic reticulum (ER). In eukaryotes, protein disulfide isomerase (PDI) is an enzyme catalyzing the disulfide bond formation and isomerization in substrates. The Arabidopsis (Arabidopsis thaliana) genome encodes diverse PDIs including structurally distinct subgroups PDI-L and PDI-M/S. It remains unclear how these AtPDIs function to catalyze the correct disulfide formation. We found that one Arabidopsis ER oxidoreductin-1 (Ero1), AtERO1, can interact with multiple PDIs. PDI-L members AtPDI2/5/6 mainly serve as an isomerase, while PDI-M/S members AtPDI9/10/11 are more efficient in accepting oxidizing equivalents from AtERO1 and catalyzing disulfide bond formation. Accordingly, the pdi9/10/11 triple mutant exhibited much stronger inhibition than pdi1/2/5/6 quadruple mutant under dithiothreitol treatment, which caused disruption of disulfide bonds in plant proteins. Furthermore, AtPDI2/5 work synergistically with PDI-M/S members in relaying disulfide bonds from AtERO1 to substrates. Our findings reveal the distinct but overlapping roles played by two structurally different AtPDI subgroups in oxidative protein folding in the ER.

摘要

二硫键在内质网(ER)中分泌和质膜蛋白的折叠中起着至关重要的作用。在真核生物中,蛋白质二硫键异构酶(PDI)是一种催化底物中二硫键形成和异构化的酶。拟南芥(Arabidopsis thaliana)基因组编码多种 PDIs,包括结构不同的 PDI-L 和 PDI-M/S 亚群。目前尚不清楚这些 AtPDIs 如何发挥作用以催化正确的二硫键形成。我们发现一个拟南芥 ER 氧化还原酶-1(Ero1),AtERO1,可以与多个 PDIs 相互作用。PDI-L 成员 AtPDI2/5/6 主要作为异构酶,而 PDI-M/S 成员 AtPDI9/10/11 更有效地从 AtERO1 接受氧化还原当量并催化二硫键形成。因此,pdi9/10/11 三重突变体在二硫苏糖醇处理下表现出比 pdi1/2/5/6 四重突变体更强的抑制作用,这会导致植物蛋白中二硫键的破坏。此外,AtPDI2/5 与 PDI-M/S 成员协同作用,将二硫键从 AtERO1 传递到底物。我们的研究结果揭示了两个结构不同的 AtPDI 亚群在 ER 中氧化蛋白折叠中发挥的独特但重叠的作用。

相似文献

1
Two protein disulfide isomerase subgroups work synergistically in catalyzing oxidative protein folding.
Plant Physiol. 2022 Jan 20;188(1):241-254. doi: 10.1093/plphys/kiab457.
2
AtERO1 and AtERO2 Exhibit Differences in Catalyzing Oxidative Protein Folding in the Endoplasmic Reticulum.
Plant Physiol. 2019 Aug;180(4):2022-2033. doi: 10.1104/pp.19.00020. Epub 2019 May 28.
3
Regulation of plant ER oxidoreductin 1 (ERO1) activity for efficient oxidative protein folding.
J Biol Chem. 2019 Dec 6;294(49):18820-18835. doi: 10.1074/jbc.RA119.010917. Epub 2019 Nov 4.
4
Distinct role of ERp57 and ERdj5 as a disulfide isomerase and reductase during ER protein folding.
J Cell Sci. 2023 Jan 15;136(2). doi: 10.1242/jcs.260656. Epub 2023 Jan 19.
5
Catalysis of protein folding by protein disulfide isomerase and small-molecule mimics.
Antioxid Redox Signal. 2003 Aug;5(4):413-24. doi: 10.1089/152308603768295159.
6
Cooperative Protein Folding by Two Protein Thiol Disulfide Oxidoreductases and 1 in Soybean.
Plant Physiol. 2016 Feb;170(2):774-89. doi: 10.1104/pp.15.01781. Epub 2015 Dec 8.
8
Ero1-PDI interactions, the response to redox flux and the implications for disulfide bond formation in the mammalian endoplasmic reticulum.
Philos Trans R Soc Lond B Biol Sci. 2013 Mar 25;368(1617):20110403. doi: 10.1098/rstb.2011.0403. Print 2013 May 5.
9
The contributions of protein disulfide isomerase and its homologues to oxidative protein folding in the yeast endoplasmic reticulum.
J Biol Chem. 2004 Nov 26;279(48):49780-6. doi: 10.1074/jbc.M409210200. Epub 2004 Sep 17.
10
Oxidative protein folding: from thiol-disulfide exchange reactions to the redox poise of the endoplasmic reticulum.
Free Radic Biol Med. 2015 Mar;80:171-82. doi: 10.1016/j.freeradbiomed.2014.07.037. Epub 2014 Aug 1.

引用本文的文献

2
Necroptosis in cancer: insight from epigenetic, post-transcriptional and post-translational modifications.
J Hematol Oncol. 2025 Jul 30;18(1):77. doi: 10.1186/s13045-025-01726-x.
3
Study on molecular response of alfalfa to low temperature stress based on transcriptomic analysis.
BMC Plant Biol. 2024 Dec 23;24(1):1244. doi: 10.1186/s12870-024-05987-5.
6
Biochemical and structural properties of a thermo-acid stable β-glucosidase from .
Heliyon. 2024 Mar 24;10(7):e28667. doi: 10.1016/j.heliyon.2024.e28667. eCollection 2024 Apr 15.
8
Protein-protein interactions in plant antioxidant defense.
Front Plant Sci. 2022 Dec 14;13:1035573. doi: 10.3389/fpls.2022.1035573. eCollection 2022.
9
A conserved protein disulfide isomerase enhances plant resistance against herbivores.
Plant Physiol. 2023 Jan 2;191(1):660-678. doi: 10.1093/plphys/kiac489.
10
Protein Disulfide Isomerases Function as the Missing Link Between Diabetes and Cancer.
Antioxid Redox Signal. 2022 Dec;37(16-18):1191-1205. doi: 10.1089/ars.2022.0098. Epub 2022 Nov 21.

本文引用的文献

1
Protein Quality Control in Plant Organelles: Current Progress and Future Perspectives.
Mol Plant. 2021 Jan 4;14(1):95-114. doi: 10.1016/j.molp.2020.10.011. Epub 2020 Nov 1.
2
Phosphorylation switches protein disulfide isomerase activity to maintain proteostasis and attenuate ER stress.
EMBO J. 2020 May 18;39(10):e103841. doi: 10.15252/embj.2019103841. Epub 2020 Mar 9.
3
AtERO1 and AtERO2 Exhibit Differences in Catalyzing Oxidative Protein Folding in the Endoplasmic Reticulum.
Plant Physiol. 2019 Aug;180(4):2022-2033. doi: 10.1104/pp.19.00020. Epub 2019 May 28.
5
Oxidative protein folding: state-of-the-art and current avenues of research in plants.
New Phytol. 2019 Feb;221(3):1230-1246. doi: 10.1111/nph.15436. Epub 2018 Sep 19.
6
Characterization of the oxidative protein folding activity of a unique plant oxidoreductase, Arabidopsis protein disulfide isomerase-11.
Biochem Biophys Res Commun. 2018 Jan 1;495(1):1041-1047. doi: 10.1016/j.bbrc.2017.11.111. Epub 2017 Nov 21.
8
Reconstitution of the plant ubiquitination cascade in bacteria using a synthetic biology approach.
Plant J. 2017 Aug;91(4):766-776. doi: 10.1111/tpj.13603. Epub 2017 Jun 25.
9
PDI family protein ERp29 recognizes P-domain of molecular chaperone calnexin.
Biochem Biophys Res Commun. 2017 Jun 3;487(3):763-767. doi: 10.1016/j.bbrc.2017.04.139. Epub 2017 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验