Monine Michael I, Berezhkovskii Alexander M, Joslin Elizabeth J, Wiley H Steven, Lauffenburger Douglas A, Shvartsman Stanislav Y
Department of Chemical Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA.
Biophys J. 2005 Apr;88(4):2384-90. doi: 10.1529/biophysj.104.051425. Epub 2005 Jan 14.
Cell-culture assays are routinely used to analyze autocrine signaling systems, but quantitative experiments are rarely possible. To enable the quantitative design and analysis of experiments with autocrine cells, we develop a biophysical theory of ligand accumulation in cell-culture assays. Our theory predicts the ligand concentration as a function of time and measurable parameters of autocrine cells and cell-culture experiments. The key step of our analysis is the derivation of the survival probability of a single ligand released from the surface of an autocrine cell. An expression for this probability is derived using the boundary homogenization approach and tested by stochastic simulations. We use this expression in the integral balance equations, from which we find the Laplace transform of the ligand concentration. We demonstrate how the theory works by analyzing the autocrine epidermal growth factor receptor system and discuss the extension of our methods to other experiments with cultured autocrine cells.
细胞培养实验通常用于分析自分泌信号系统,但定量实验很少能够实现。为了能够对自分泌细胞实验进行定量设计和分析,我们开发了一种细胞培养实验中配体积累的生物物理理论。我们的理论预测了配体浓度随时间以及自分泌细胞和细胞培养实验可测量参数的变化。我们分析的关键步骤是推导自分泌细胞表面释放的单个配体的存活概率。使用边界均匀化方法得出该概率的表达式,并通过随机模拟进行检验。我们将此表达式用于积分平衡方程,从中找到配体浓度的拉普拉斯变换。我们通过分析自分泌表皮生长因子受体系统来演示该理论的工作原理,并讨论将我们的方法扩展到其他培养自分泌细胞实验的情况。