Tschumperlin Daniel J, Dai Guohao, Maly Ivan V, Kikuchi Tadashi, Laiho Lily H, McVittie Anna K, Haley Kathleen J, Lilly Craig M, So Peter T C, Lauffenburger Douglas A, Kamm Roger D, Drazen Jeffrey M
Physiology Program, Department of Environmental Health, Harvard School of Public Health, Harvard Medical School, Boston, Massachusetts 02115, USA.
Nature. 2004 May 6;429(6987):83-6. doi: 10.1038/nature02543. Epub 2004 Apr 21.
Physical forces elicit biochemical signalling in a diverse array of cells, tissues and organisms, helping to govern fundamental biological processes. Several hypotheses have been advanced that link physical forces to intracellular signalling pathways, but in many cases the molecular mechanisms of mechanotransduction remain elusive. Here we find that compressive stress shrinks the lateral intercellular space surrounding epithelial cells, and triggers cellular signalling via autocrine binding of epidermal growth factor family ligands to the epidermal growth factor receptor. Mathematical analysis predicts that constant rate shedding of autocrine ligands into a collapsing lateral intercellular space leads to increased local ligand concentrations that are sufficient to account for the observed receptor signalling; direct experimental comparison of signalling stimulated by compressive stress versus exogenous soluble ligand supports this prediction. These findings establish a mechanism by which mechanotransduction arises from an autocrine ligand-receptor circuit operating in a dynamically regulated extracellular volume, not requiring induction of force-dependent biochemical processes within the cell or cell membrane.
物理力在各种细胞、组织和生物体中引发生化信号传导,有助于调控基本的生物学过程。已经提出了几种将物理力与细胞内信号通路联系起来的假说,但在许多情况下,机械转导的分子机制仍然难以捉摸。在这里,我们发现压缩应力会使上皮细胞周围的侧向细胞间隙缩小,并通过表皮生长因子家族配体与表皮生长因子受体的自分泌结合触发细胞信号传导。数学分析预测,自分泌配体以恒定速率释放到正在塌陷的侧向细胞间隙中会导致局部配体浓度增加,足以解释观察到的受体信号传导;对压缩应力与外源性可溶性配体刺激的信号传导进行直接实验比较支持了这一预测。这些发现建立了一种机制,通过该机制,机械转导源于在动态调节的细胞外体积中运行的自分泌配体 - 受体回路,而不需要在细胞或细胞膜内诱导力依赖性生化过程。