Suppr超能文献

心脏搭桥手术后的死亡率:基于管理数据与临床数据的预测

Mortality after cardiac bypass surgery: prediction from administrative versus clinical data.

作者信息

Geraci Jane M, Johnson Michael L, Gordon Howard S, Petersen Nancy J, Shroyer A Laurie, Grover Frederick L, Wray Nelda P

机构信息

Houston Center for Quality of Care and Utilization Studies, Houston Veterans Affairs Medical Center, and the Section of Health Services Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.

出版信息

Med Care. 2005 Feb;43(2):149-58. doi: 10.1097/00005650-200502000-00008.

Abstract

BACKGROUND

Risk-adjusted outcome rates frequently are used to make inferences about hospital quality of care. We calculated risk-adjusted mortality rates in veterans undergoing isolated coronary artery bypass surgery (CABS) from administrative data and from chart-based clinical data and compared the assessment of hospital high and low outlier status for mortality that results from these 2 data sources.

STUDY POPULATION

We studied veterans who underwent CABS in 43 VA hospitals between October 1, 1993, and March 30, 1996 (n=15,288).

METHODS

To evaluate administrative data, we entered 6 groups of International Classification of Diseases (ICD)-9-CM codes for comorbid diagnoses from the VA Patient Treatment File (PTF) into a logistic regression model predicting postoperative mortality. We also evaluated counts of comorbid ICD-9-CM codes within each group, along with 3 common principal diagnoses, weekend admission or surgery, major procedures associated with CABS, and demographic variables. Data from the VA Continuous Improvement in Cardiac Surgery Program (CICSP) were used to create a separate clinical model predicting postoperative mortality. For each hospital, an observed-to-expected (O/E) ratio of mortality was calculated from (1) the PTF model and (2) the CICSP model. We defined outlier status as an O/E ratio outside of 1.0 (based on the hospital's 90% confidence interval). To improve the statistical and predictive power of the PTF model, selected clinical variables from CICSP were added to it and outlier status reassessed.

RESULTS

Significant predictors of postoperative mortality in the PTF model included 1 group of comorbid ICD-9-CM codes, intraortic balloon pump insertion before CABS, angioplasty on the day of or before CABS, weekend surgery, and a principal diagnosis of other forms of ischemic heart disease. The model's c-index was 0.698. As expected, the CICSP model's predictive power was significantly greater than that of the administrative model (c=0.761). The addition of just 2 CICSP variables to the PTF model improved its predictive power (c=0.741). This model identified 5 of 6 high mortality outliers identified by the CICSP model. Additional CICSP variables were statistically significant predictors but did not improve the assessment of high outlier status.

CONCLUSIONS

Models using administrative data to predict postoperative mortality can be improved with the addition of a very small number of clinical variables. Limited clinical improvements of administrative data may make it suitable for use in quality improvement efforts.

摘要

背景

风险调整后的结局率常被用于推断医院的医疗质量。我们根据行政数据和基于病历的临床数据计算了接受单纯冠状动脉搭桥手术(CABS)的退伍军人的风险调整死亡率,并比较了这两种数据来源对医院死亡率高低异常状态的评估。

研究人群

我们研究了1993年10月1日至1996年3月30日期间在43家退伍军人事务部(VA)医院接受CABS手术的退伍军人(n = 15288)。

方法

为评估行政数据,我们将退伍军人事务部患者治疗档案(PTF)中共病诊断的6组国际疾病分类(ICD)-9-CM编码输入到一个预测术后死亡率的逻辑回归模型中。我们还评估了每组中共病ICD-9-CM编码的数量,以及3种常见的主要诊断、周末入院或手术、与CABS相关的大手术和人口统计学变量。退伍军人事务部心脏外科持续改进项目(CICSP)的数据用于创建一个单独的预测术后死亡率的临床模型。对于每家医院,从(1)PTF模型和(2)CICSP模型计算观察到的与预期的(O/E)死亡率比值。我们将异常状态定义为O/E比值超出1.0(基于医院的90%置信区间)。为提高PTF模型的统计和预测能力,将从CICSP中选择出的临床变量添加到该模型中,并重新评估异常状态。

结果

PTF模型中术后死亡率的显著预测因素包括1组共病ICD-9-CM编码、CABS术前主动脉内球囊泵置入、CABS当天或前一天的血管成形术、周末手术以及其他形式缺血性心脏病的主要诊断。该模型的c指数为0.698。正如预期的那样,CICSP模型的预测能力显著高于行政模型(c = 0.761)。仅向PTF模型添加2个CICSP变量就提高了其预测能力(c = 0.741)。该模型识别出了CICSP模型确定的6个高死亡率异常值中的5个。其他CICSP变量是具有统计学意义的预测因素,但并未改善对高异常状态的评估。

结论

通过添加极少数临床变量,可以改进使用行政数据预测术后死亡率的模型。行政数据有限的临床改进可能使其适用于质量改进工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验