Suppr超能文献

大肠杆菌K12支链氨基酸生物合成途径的数学模型。

A mathematical model for the branched chain amino acid biosynthetic pathways of Escherichia coli K12.

作者信息

Yang Chin-Rang, Shapiro Bruce E, Hung She-Pin, Mjolsness Eric D, Hatfield G Wesley

机构信息

Department of Microbiology and Molecular Genetics, College of Medicine, University of California at Irvine, Irvine, California 92697, USA.

出版信息

J Biol Chem. 2005 Mar 25;280(12):11224-32. doi: 10.1074/jbc.M411471200. Epub 2005 Jan 18.

Abstract

As a first step toward the elucidation of the systems biology of the model organism Escherichia coli, it was our goal to mathematically model a metabolic system of intermediate complexity, namely the well studied end product-regulated pathways for the biosynthesis of the branched chain amino acids L-isoleucine, L-valine, and L-leucine. This has been accomplished with the use of kMech (Yang, C.-R., Shapiro, B. E., Mjolsness, E. D., and Hatfield, G. W. (2005) Bioinformatics 21, in press), a Cellerator (Shapiro, B. E., Levchenko, A., Meyerowitz, E. M., Wold, B. J., and Mjolsness, E. D. (2003) Bioinformatics 19, 677-678) language extension that describes a suite of enzyme reaction mechanisms. Each enzyme mechanism is parsed by kMech into a set of fundamental association-dissociation reactions that are translated by Cellerator into ordinary differential equations. These ordinary differential equations are numerically solved by Mathematica. Any metabolic pathway can be simulated by stringing together appropriate kMech models and providing the physical and kinetic parameters for each enzyme in the pathway. Writing differential equations is not required. The mathematical model of branched chain amino acid biosynthesis in E. coli K12 presented here incorporates all of the forward and reverse enzyme reactions and regulatory circuits of the branched chain amino acid biosynthetic pathways, including single and multiple substrate (Ping Pong and Bi Bi) enzyme kinetic reactions, feedback inhibition (allosteric, competitive, and non-competitive) mechanisms, the channeling of metabolic flow through isozymes, the channeling of metabolic flow via transamination reactions, and active transport mechanisms. This model simulates the results of experimental measurements.

摘要

作为阐明模式生物大肠杆菌系统生物学的第一步,我们的目标是对中等复杂程度的代谢系统进行数学建模,即对研究充分的支链氨基酸L-异亮氨酸、L-缬氨酸和L-亮氨酸生物合成的终产物调节途径进行建模。这是通过使用kMech(Yang, C.-R., Shapiro, B. E., Mjolsness, E. D., and Hatfield, G. W. (2005) Bioinformatics 21, in press)完成的,kMech是一种Cellerator(Shapiro, B. E., Levchenko, A., Meyerowitz, E. M., Wold, B. J., and Mjolsness, E. D. (2003) Bioinformatics 19, 677-678)语言扩展,它描述了一套酶反应机制。kMech将每个酶机制解析为一组基本的缔合-解离反应,Cellerator将这些反应转化为常微分方程。这些常微分方程由Mathematica进行数值求解。通过将适当的kMech模型串联在一起,并提供途径中每种酶的物理和动力学参数,就可以模拟任何代谢途径。无需编写微分方程。本文介绍的大肠杆菌K12中支链氨基酸生物合成的数学模型纳入了支链氨基酸生物合成途径的所有正向和反向酶反应及调节回路,包括单底物和多底物(乒乓和双双)酶动力学反应、反馈抑制(别构、竞争性和非竞争性)机制、通过同工酶的代谢流通道化、通过转氨反应的代谢流通道化以及主动运输机制。该模型模拟了实验测量结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验