Molinelli Alexandra, Janotta Markus, Mizaikoff Boris
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
Methods Mol Biol. 2005;300:243-54. doi: 10.1385/1-59259-858-7:243.
Molecular imprinting of polymers is a concept for the synthetic formation of structurally organized materials providing binding sites with molecular selectivity. Compared to biological receptors, these polymeric recognition systems have the advantage of superior chemical and mechanical stability with potential applications in areas such as biomimetic catalysis and engineering, biomedical analysis, sensor technology, or the food industry. In particular, molecularly imprinted polymers (MIPs) providing selectivity for biorelated molecules are gaining substantial importance. In this context, a self-assembly approach for the synthesis of imprinted polymers against the flavonol quercetin is presented, which is exemplary for the biologically relevant group of flavonoid compounds. The creation of synthetic selective recognition sites for this biomolecule is demonstrated by comparing the separation capabilities of imprinted and nonimprinted polymer particles for several structurally related molecules via high-performance liquid chromatography experiments. The developed quercetin-MIP enables selective extraction of quercetin even from complex mixtures, demonstrating the potential for designing biomimetic recognition materials with improved selectivity for biomolecules with tunable functionality at a nanoscale.
聚合物的分子印迹是一种用于合成结构有序材料的概念,该材料可提供具有分子选择性的结合位点。与生物受体相比,这些聚合物识别系统具有卓越的化学和机械稳定性,在仿生催化与工程、生物医学分析、传感器技术或食品工业等领域具有潜在应用价值。特别是,对生物相关分子具有选择性的分子印迹聚合物(MIP)正变得越来越重要。在此背景下,本文介绍了一种用于合成针对黄酮醇槲皮素的印迹聚合物的自组装方法,该方法是黄酮类化合物这一生物相关基团的典型代表。通过高效液相色谱实验比较印迹和非印迹聚合物颗粒对几种结构相关分子的分离能力,证明了为这种生物分子创建合成选择性识别位点的可行性。所开发的槲皮素-MIP即使从复杂混合物中也能实现槲皮素的选择性提取,证明了在纳米尺度上设计对具有可调功能的生物分子具有更高选择性的仿生识别材料的潜力。