Banerjee Mithu, Poddar Asim, Mitra Gopa, Surolia Avadhesha, Owa Takashi, Bhattacharyya Bhabatarak
Department of Biochemistry, Centenary Campus, P1/12, CIT Scheme 7 M, Bose Institute, Calcutta 700 054, India.
J Med Chem. 2005 Jan 27;48(2):547-55. doi: 10.1021/jm0494974.
The discovery of several sulfonamide drugs paved the way toward the synthesis of 6 (N-[2-[(4-hydroxyphenyl)amino]-3-pyridinyl]-4-methoxybenzenesulfonamide, E7010) and 7 (N-(3-fluoro-4-methoxyphenyl)pentafluorobenzenesulfonamide, T138067), both of which inhibit tubulin polymerization and are under clinical development. A series of diarylsulfonamides containing an indole scaffold was also found to have antimitotic properties, but their mode of interactions with tubulin has remained unidentified so far. In this study, we demonstrate that these sulfonamide drugs bind to the colchicine site of tubulin in a reversible manner. They quenched intrinsic tryptophan fluorescence of tubulin presumably due to drug-induced conformational changes in the protein, but were unable to modulate GTPase activity of tubulin in contrast to colchicine that enhances the same enzymatic activity. Further investigation using isothermal titration calorimetry (ITC) revealed that 5 (N-(5-chloro-7-indolyl)-4-methoxybenzenesulfonamide) afforded a large positive value of heat capacity change (DeltaC(p)() = +264 cal mol(-1) K(-1)) on binding to tubulin, suggesting a substantial conformational transition in the protein along with partial enthalpy-entropy compensation. On the other hand, the 2-chloro regioisomer 2 gave a large negative value of DeltaC(p)() (-589 cal mol(-1) K(-1)) along with complete enthalpy-entropy compensation. This thermodynamic profile was thought to be attributable to a prominent contribution of van der Waals interaction and hydrogen bonding between specific groups in the drug-tubulin complex. These results indicate that a mere alteration in the position of a single substituent chlorine on the indole scaffold has a great influence on the drug-tubulin binding thermodynamics.
几种磺胺类药物的发现为6(N-[2-[(4-羟基苯基)氨基]-3-吡啶基]-4-甲氧基苯磺酰胺,E7010)和7(N-(3-氟-4-甲氧基苯基)五氟苯磺酰胺,T138067)的合成铺平了道路,这两种药物均能抑制微管蛋白聚合,且都处于临床开发阶段。还发现一系列含有吲哚骨架的二芳基磺酰胺具有抗有丝分裂特性,但迄今为止它们与微管蛋白的相互作用模式仍未明确。在本研究中,我们证明这些磺胺类药物以可逆方式结合到微管蛋白的秋水仙碱结合位点。它们淬灭了微管蛋白的固有色氨酸荧光,这可能是由于药物诱导蛋白质构象变化所致,但与增强相同酶活性的秋水仙碱不同,它们无法调节微管蛋白的GTP酶活性。使用等温滴定量热法(ITC)的进一步研究表明,5(N-(5-氯-吲哚-7-基)-4-甲氧基苯磺酰胺)与微管蛋白结合时产生了较大的正热容变化值(ΔC(p) = +264 cal mol⁻¹ K⁻¹),表明蛋白质发生了显著的构象转变以及部分焓-熵补偿。另一方面,2-氯区域异构体2产生了较大的负ΔC(p)值(-589 cal mol⁻¹ K⁻¹)以及完全的焓-熵补偿。这种热力学特征被认为归因于药物-微管蛋白复合物中特定基团之间范德华相互作用和氢键的显著贡献。这些结果表明,吲哚骨架上单个取代基氯位置的仅仅改变对药物-微管蛋白结合热力学有很大影响。