Suppr超能文献

拟南芥中14-3-3蛋白之间的亚型特异性亚细胞定位似乎是由与客户蛋白的相互作用驱动的。

Isoform-specific subcellular localization among 14-3-3 proteins in Arabidopsis seems to be driven by client interactions.

作者信息

Paul Anna-Lisa, Sehnke Paul C, Ferl Robert J

机构信息

Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, 32611, USA.

出版信息

Mol Biol Cell. 2005 Apr;16(4):1735-43. doi: 10.1091/mbc.e04-09-0839. Epub 2005 Jan 19.

Abstract

In most higher eukaryotes, the predominantly phosphoprotein-binding 14-3-3 proteins are the products of a multigene family, with many organisms having 10 or more family members. However, current models for 14-3-3/phosphopeptide interactions suggest that there is little specificity among 14-3-3s for diverse phosphopeptide clients. Therefore, the existence of sequence diversity among 14-3-3s within a single organism begs questions regarding the in vivo specificities of the interactions between the various 14-3-3s and their clients. Chief among those questions is, Do the different 14-3-3 isoforms interact with different clients within the same cell? Although the members of the Arabidopsis 14-3-3 family of proteins typically contain highly conserved regions of sequence, they also display distinctive variability with deep evolutionary roots. In the current study, a survey of several Arabidopsis 14-3-3/GFP fusions revealed that 14-3-3s demonstrate distinct and differential patterns of subcellular distribution, by using trichomes and stomate guard cells as in vivo experimental cellular contexts. The effects of client interaction on 14-3-3 localization were further analyzed by disrupting the partnering with peptide and chemical agents. Results indicate that 14-3-3 localization is both isoform specific and highly dependent upon interaction with cellular clients.

摘要

在大多数高等真核生物中,主要结合磷蛋白的14-3-3蛋白是一个多基因家族的产物,许多生物有10个或更多的家族成员。然而,目前关于14-3-3/磷酸肽相互作用的模型表明,14-3-3对不同的磷酸肽底物几乎没有特异性。因此,单一生物体内14-3-3之间存在序列多样性,这引发了关于各种14-3-3与其底物之间体内相互作用特异性的问题。其中最主要的问题是,不同的14-3-3亚型是否在同一细胞内与不同的底物相互作用?拟南芥14-3-3蛋白家族的成员通常包含高度保守的序列区域,但它们也表现出具有深厚进化根源的独特变异性。在当前的研究中,对几种拟南芥14-3-3/绿色荧光蛋白融合体的调查显示,以毛状体和气孔保卫细胞作为体内实验细胞环境,14-3-3呈现出不同的亚细胞分布模式。通过用肽和化学试剂破坏这种相互作用,进一步分析了底物相互作用对14-3-3定位的影响。结果表明,14-3-3的定位既是亚型特异性的,又高度依赖于与细胞底物的相互作用。

相似文献

1
Isoform-specific subcellular localization among 14-3-3 proteins in Arabidopsis seems to be driven by client interactions.
Mol Biol Cell. 2005 Apr;16(4):1735-43. doi: 10.1091/mbc.e04-09-0839. Epub 2005 Jan 19.
2
4
The 14-3-3 isoforms chi and epsilon differentially bind client proteins from developing Arabidopsis seed.
J Proteome Res. 2011 Sep 2;10(9):4076-87. doi: 10.1021/pr200263m. Epub 2011 Aug 3.
5
6
Evolution and isoform specificity of plant 14-3-3 proteins.
Plant Mol Biol. 2002 Dec;50(6):1011-8. doi: 10.1023/a:1021289127519.
7
Soybean 14-3-3 gene family: identification and molecular characterization.
Planta. 2011 Mar;233(3):569-82. doi: 10.1007/s00425-010-1315-6. Epub 2010 Nov 26.
9
14-3-3 proteins fine-tune plant nutrient metabolism.
FEBS Lett. 2011 Jan 3;585(1):143-7. doi: 10.1016/j.febslet.2010.11.025. Epub 2010 Nov 19.
10
FTICR-MS analysis of 14-3-3 isoform substrate selection.
Biochim Biophys Acta. 2007 Jul;1774(7):866-73. doi: 10.1016/j.bbapap.2007.05.004. Epub 2007 May 18.

引用本文的文献

1
The 14-3-3 protein nt GF14e interacts with CIPK2 and increases low potassium stress in tobacco.
Plant Signal Behav. 2024 Dec 31;19(1):2359257. doi: 10.1080/15592324.2024.2359257. Epub 2024 Jun 2.
3
Overexpression of peanut ( L.) gene enhanced root growth inhibition under exogenous NAA treatment in .
Front Plant Sci. 2023 Jun 21;14:1184058. doi: 10.3389/fpls.2023.1184058. eCollection 2023.
6
Molecular Analysis of Genes in and Their Responses to Different Stresses.
Int J Mol Sci. 2021 Jan 8;22(2):568. doi: 10.3390/ijms22020568.
7
Guard Cells Integrate Light and Temperature Signals to Control Stomatal Aperture.
Plant Physiol. 2020 Mar;182(3):1404-1419. doi: 10.1104/pp.19.01528. Epub 2020 Jan 16.
10
Oscillating Aquaporin Phosphorylation and 14-3-3 Proteins Mediate the Circadian Regulation of Leaf Hydraulics.
Plant Cell. 2019 Feb;31(2):417-429. doi: 10.1105/tpc.18.00804. Epub 2019 Jan 23.

本文引用的文献

1
Abscisic acid and 14-3-3 proteins control K channel activity in barley embryonic root.
Plant J. 2005 Jan;41(1):43-55. doi: 10.1111/j.1365-313X.2004.02273.x.
3
Isoform-specific expression of 14-3-3 proteins in human lung cancer tissues.
Int J Cancer. 2005 Jan 20;113(3):359-63. doi: 10.1002/ijc.20492.
7
14-3-3 and its possible role in co-ordinating multiple signalling pathways.
Trends Cell Biol. 1996 Sep;6(9):341-7. doi: 10.1016/0962-8924(96)10029-5.
8
Unlocking the code of 14-3-3.
J Cell Sci. 2004 Apr 15;117(Pt 10):1875-84. doi: 10.1242/jcs.01171.
9
Interaction of apoptosis signal-regulating kinase 1 with isoforms of 14-3-3 proteins.
Exp Cell Res. 2004 Apr 1;294(2):581-91. doi: 10.1016/j.yexcr.2003.12.009.
10
14-3-3 PROTEINS AND SIGNAL TRANSDUCTION.
Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:49-73. doi: 10.1146/annurev.arplant.47.1.49.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验