Thomas James L, Umland Timothy C, Scaccia Launa A, Boswell Elizabeth L, Kacsoh Balint
Mercer University School of Medicine, Macon, GA 31207, USA.
Endocr Res. 2004 Nov;30(4):935-41. doi: 10.1081/erc-200044164.
Two distinct genes encode the tissue-specific expression of the two isoforms of human 3beta-hydroxysteroid dehydrogenase: 3beta-HSD1 (placenta, mammary gland, breast tumors) and 3beta-HSD2 (gonads, adrenals). Purified 3beta-HSD1 utilizes DHEA as a substrate with 13-fold lower Km than 3beta-HSD2. Using homogenates of human MCF-7 Tet-off breast tumor cells stably transfected with human 3beta-HSD1 or 3beta-HSD2, DHEA is utilized as substrate by 3beta-HSD1 (Km = 4.8 microM) much more avidly than by 3beta-HSD2 (Km = 43 microM). In addition, the 3beta-HSD inhibitor, epostane, binds to purified 3beta-HSD1 with a 17-fold higher affinity compared to 3beta-HSD2. In the MCF-7 cells, two 3beta-HSD inhibitors block 3beta-HSD1 activity (Ki = 0.06 microM, epostane; 0.08 microM, trilostane) with 12- to 14-fold higher affinities compared to the inhibition of 3beta-HSD2 (Ki = 0.85 microM, epostane; 1.01 microM, trilostane). Thus, the substantially higher affinities of human 3beta-HSD1 for substrate and inhibitor steroids measured using the pure isoenzymes have been validated using microsome-bound 3beta-HSD1 and 3beta-HSD2 in the MCF-7 cells. Similar to our previously reported H156Y mutant of 3beta-HSD1, the Q105M mutant of 3beta-HSD1 shifts the substrate and inhibitor kinetic profiles to those of wild-type 3beta-HSD2. However, the Q105M mutant of 3beta-HSD2 retains the substrate and inhibitor kinetic profiles of wild-type 3beta-HSD2. Our structural homology model of human 3beta-HSD predicts that Gln105 on one enzyme subunit hydrogen-binds to His156 on the other subunit of the enzyme homodimer. The higher affinity of 3beta-HSD1 for the steroids may be related to different subunit interactions in the quaternary structures of the two isoenzymes. It may be possible to exploit these kinetic differences to selectively inhibit the conversion of DHEA ultimately to estradiol by 3beta-HSD1 and slow the growth of breast tumor cells.
两种不同的基因编码人3β-羟基类固醇脱氢酶两种同工型的组织特异性表达:3β-HSD1(胎盘、乳腺、乳腺肿瘤)和3β-HSD2(性腺、肾上腺)。纯化的3β-HSD1将脱氢表雄酮(DHEA)用作底物,其米氏常数(Km)比3β-HSD2低13倍。用人3β-HSD1或3β-HSD2稳定转染的人MCF-7 Tet-off乳腺肿瘤细胞匀浆,3β-HSD1(Km = 4.8微摩尔)比3β-HSD2(Km = 43微摩尔)更 avidly地将DHEA用作底物。此外,3β-HSD抑制剂依普斯坦与纯化的3β-HSD1结合的亲和力比3β-HSD2高17倍。在MCF-7细胞中,两种3β-HSD抑制剂阻断3β-HSD1活性(依普斯坦的抑制常数Ki = 0.06微摩尔;曲洛司坦的抑制常数Ki = 0.08微摩尔),其亲和力比抑制3β-HSD2(依普斯坦的抑制常数Ki = 0.85微摩尔;曲洛司坦的抑制常数Ki = 1.01微摩尔)高12至14倍。因此,使用纯同工酶测量的人3β-HSD1对底物和抑制剂类固醇的亲和力显著更高,这已在MCF-7细胞中结合微粒体的3β-HSD1和3β-HSD2中得到验证。与我们先前报道的3β-HSD1的H156Y突变体类似,3β-HSD1的Q105M突变体将底物和抑制剂动力学曲线转变为野生型3β-HSD2的曲线。然而,3β-HSD2的Q105M突变体保留了野生型3β-HSD2的底物和抑制剂动力学曲线。我们的人3β-HSD结构同源模型预测,一个酶亚基上的谷氨酰胺105与酶同二聚体另一个亚基上的组氨酸156形成氢键。3β-HSD1对类固醇的更高亲和力可能与两种同工酶四级结构中不同的亚基相互作用有关。有可能利用这些动力学差异选择性抑制3β-HSD1将DHEA最终转化为雌二醇,并减缓乳腺肿瘤细胞的生长。