Suppr超能文献

确定相对于人3β-羟基类固醇脱氢酶/异构酶2(3β-HSD2)而言,人1型3β-羟基类固醇脱氢酶/异构酶(3β-HSD1)对底物、辅酶和抑制剂具有显著更高亲和力的关键氨基酸。

Identification of key amino acids responsible for the substantially higher affinities of human type 1 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD1) for substrates, coenzymes, and inhibitors relative to human 3beta-HSD2.

作者信息

Thomas James L, Boswell Elizabeth L, Scaccia Launa A, Pletnev Vladimir, Umland Timothy C

机构信息

Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207, USA.

出版信息

J Biol Chem. 2005 Jun 3;280(22):21321-8. doi: 10.1074/jbc.M501269200. Epub 2005 Mar 28.

Abstract

The human type 1 (placenta, breast tumors, and prostate tumors) and type 2 (adrenals and gonads) isoforms of 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD1 and 3beta-HSD2) are encoded by two distinct genes that are expressed in a tissue-specific pattern. Our recent studies have shown that His156 contributes to the 14-fold higher affinity that 3beta-HSD1 exhibits for substrate and inhibitor steroids compared with human 3beta-HSD2 containing Tyr156 in the otherwise identical catalytic domain. Our structural model of human 3beta-HSD localizes His156 or Tyr156 in the subunit interface of the enzyme homodimer. The model predicts that Gln105 on one enzyme subunit has a higher probability of interacting with His156 on the other subunit in 3beta-HSD1 than with Tyr156 in 3beta-HSD2. The Q105M mutant of 3beta-HSD1 (Q105M1) shifts the Michaelis-Menten constant (Km) for 3beta-HSD substrate and inhibition constants (Ki) for epostane and trilostane to the much lower affinity profiles measured for wild-type 3beta-HSD2 and H156Y1. However, the Q105M2 mutant retains substrate and inhibitor kinetic profiles similar to those of 3beta-HSD2. Our model also predicts that Gln240 in 3beta-HSD1 and Arg240 in 3beta-HSD2 may be responsible for the 3-fold higher affinity of the type 1 isomerase activity for substrate steroid and cofactors. The Q240R1 mutation increases the isomerase substrate Km by 2.2-fold to a value similar to that of 3beta-HSD2 isomerase and abolishes the allosteric activation of isomerase by NADH. The R240Q2 mutation converts the isomerase substrate, cofactor, and inhibitor kinetic profiles to the 4-14-fold higher affinity profiles of 3beta-HSD1. Thus, key structural reasons for the substantially higher affinities of 3beta-HSD1 for substrates, coenzymes, and inhibitors have been identified. These structure and function relationships can be used in future docking studies to design better inhibitors of the 3beta-HSD1 that may be useful in the treatment of hormone-sensitive cancers and preterm labor.

摘要

3β-羟基类固醇脱氢酶/异构酶(3β-HSD1和3β-HSD2)的人类1型(胎盘、乳腺肿瘤和前列腺肿瘤)和2型(肾上腺和性腺)同工型由两个不同的基因编码,这些基因以组织特异性模式表达。我们最近的研究表明,与在其他方面相同的催化结构域中含有Tyr156的人类3β-HSD2相比,His156使3β-HSD1对底物和抑制剂类固醇表现出高14倍的亲和力。我们的人类3β-HSD结构模型将His156或Tyr156定位在酶同二聚体的亚基界面中。该模型预测,在3β-HSD1中,一个酶亚基上的Gln105与另一个亚基上的His156相互作用的可能性高于与3β-HSD2中的Tyr156相互作用的可能性。3β-HSD1的Q105M突变体(Q105M1)将3β-HSD底物的米氏常数(Km)以及依普斯坦和曲洛斯坦的抑制常数(Ki)转变为针对野生型3β-HSD2和H156Y1所测得的低得多的亲和力谱。然而,Q105M2突变体保留了与3β-HSD2相似的底物和抑制剂动力学谱。我们的模型还预测,3β-HSD1中的Gln240和3β-HSD2中的Arg240可能是1型异构酶活性对底物类固醇和辅因子具有高3倍亲和力的原因。Q240R1突变使异构酶底物Km增加2.2倍,达到与3β-HSD2异构酶相似的值,并消除了NADH对异构酶的变构激活。R240Q2突变将异构酶底物、辅因子和抑制剂的动力学谱转变为3β-HSD1的高4至14倍的亲和力谱。因此,已经确定了3β-HSD1对底物、辅酶和抑制剂具有显著更高亲和力的关键结构原因。这些结构与功能关系可用于未来的对接研究,以设计出可能对治疗激素敏感性癌症和早产有用的更好的3β-HSD1抑制剂。

相似文献

3
4
Structure-function relationships for the selective inhibition of human 3β-hydroxysteroid dehydrogenase type 1 by a novel androgen analog.
J Steroid Biochem Mol Biol. 2017 Nov;174:257-264. doi: 10.1016/j.jsbmb.2017.10.004. Epub 2017 Oct 12.
5
Structure/function of the inhibition of human 3beta-hydroxysteroid dehydrogenase type 1 and type 2 by trilostane.
J Steroid Biochem Mol Biol. 2008 Jul;111(1-2):66-73. doi: 10.1016/j.jsbmb.2008.04.007. Epub 2008 May 3.
6
Structure/function aspects of human 3beta-hydroxysteroid dehydrogenase.
Mol Cell Endocrinol. 2004 Feb 27;215(1-2):73-82. doi: 10.1016/j.mce.2003.11.018.
7
Selective inhibition of human 3β-hydroxysteroid dehydrogenase type 1 as a potential treatment for breast cancer.
J Steroid Biochem Mol Biol. 2011 May;125(1-2):57-65. doi: 10.1016/j.jsbmb.2010.08.003. Epub 2010 Aug 22.
9
Structural basis for the selective inhibition of human 3beta-hydroxysteroid dehydrogenase 1 in human breast tumor MCF-7 cells.
Mol Cell Endocrinol. 2009 Mar 25;301(1-2):174-82. doi: 10.1016/j.mce.2008.09.029. Epub 2008 Oct 8.

引用本文的文献

1
Unexpectedly high mutation rate of cyp11b1 compared to cyp21a2 in randomly-selected turkish women: a large screening study.
J Endocrinol Invest. 2023 Nov;46(11):2367-2377. doi: 10.1007/s40618-023-02093-5. Epub 2023 Apr 13.
4
Glutathione Transferases as Efficient Ketosteroid Isomerases.
Front Mol Biosci. 2021 Nov 22;8:765970. doi: 10.3389/fmolb.2021.765970. eCollection 2021.
5
Overview of the Molecular Steps in Steroidogenesis of the GABAergic Neurosteroids Allopregnanolone and Pregnanolone.
Chronic Stress (Thousand Oaks). 2018 Dec 19;2:2470547018818555. doi: 10.1177/2470547018818555. eCollection 2018 Jan-Dec.
6
Characterization of steroid 5α-reductase involved in α-tomatine biosynthesis in tomatoes.
Plant Biotechnol (Tokyo). 2019 Dec 25;36(4):253-263. doi: 10.5511/plantbiotechnology.19.1030a.
7
Lipid-mediated unfolding of 3β-hydroxysteroid dehydrogenase 2 is essential for steroidogenic activity.
Biochemistry. 2011 Dec 27;50(51):11015-24. doi: 10.1021/bi2016102. Epub 2011 Dec 6.
8
Selective inhibition of human 3β-hydroxysteroid dehydrogenase type 1 as a potential treatment for breast cancer.
J Steroid Biochem Mol Biol. 2011 May;125(1-2):57-65. doi: 10.1016/j.jsbmb.2010.08.003. Epub 2010 Aug 22.
10
Structural basis for the selective inhibition of human 3beta-hydroxysteroid dehydrogenase 1 in human breast tumor MCF-7 cells.
Mol Cell Endocrinol. 2009 Mar 25;301(1-2):174-82. doi: 10.1016/j.mce.2008.09.029. Epub 2008 Oct 8.

本文引用的文献

2
The selective estrogen enzyme modulators in breast cancer: a review.
Biochim Biophys Acta. 2004 Jun 7;1654(2):123-43. doi: 10.1016/j.bbcan.2004.03.001.
3
Finasteride, a selective 5-alpha-reductase inhibitor, in the prevention and treatment of human prostate cancer.
Clin Prostate Cancer. 2004 Mar;2(4):206-8. doi: 10.1016/s1540-0352(11)70045-2.
4
Oxytocin receptor gene expression of estrogen-stimulated human myometrium in extracorporeally perfused non-pregnant uteri.
Mol Hum Reprod. 2004 May;10(5):339-46. doi: 10.1093/molehr/gah039. Epub 2004 Mar 25.
5
Structure-function of human 3 alpha-hydroxysteroid dehydrogenases: genes and proteins.
Mol Cell Endocrinol. 2004 Feb 27;215(1-2):63-72. doi: 10.1016/j.mce.2003.11.006.
6
Origin and characteristics of adverse events in aromatase inhibition therapy for breast cancer.
Semin Oncol. 2003 Aug;30(4 Suppl 14):58-69. doi: 10.1016/s0093-7754(03)00300-2.
8
Hormonal therapy: historical perspective to future directions.
Urology. 2003 Feb;61(2 Suppl 1):3-7. doi: 10.1016/s0090-4295(02)02393-2.
10
Dissecting human adrenal androgen production.
Trends Endocrinol Metab. 2002 Aug;13(6):234-9. doi: 10.1016/s1043-2760(02)00609-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验