Thomas James L, Boswell Elizabeth L, Scaccia Launa A, Pletnev Vladimir, Umland Timothy C
Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207, USA.
J Biol Chem. 2005 Jun 3;280(22):21321-8. doi: 10.1074/jbc.M501269200. Epub 2005 Mar 28.
The human type 1 (placenta, breast tumors, and prostate tumors) and type 2 (adrenals and gonads) isoforms of 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD1 and 3beta-HSD2) are encoded by two distinct genes that are expressed in a tissue-specific pattern. Our recent studies have shown that His156 contributes to the 14-fold higher affinity that 3beta-HSD1 exhibits for substrate and inhibitor steroids compared with human 3beta-HSD2 containing Tyr156 in the otherwise identical catalytic domain. Our structural model of human 3beta-HSD localizes His156 or Tyr156 in the subunit interface of the enzyme homodimer. The model predicts that Gln105 on one enzyme subunit has a higher probability of interacting with His156 on the other subunit in 3beta-HSD1 than with Tyr156 in 3beta-HSD2. The Q105M mutant of 3beta-HSD1 (Q105M1) shifts the Michaelis-Menten constant (Km) for 3beta-HSD substrate and inhibition constants (Ki) for epostane and trilostane to the much lower affinity profiles measured for wild-type 3beta-HSD2 and H156Y1. However, the Q105M2 mutant retains substrate and inhibitor kinetic profiles similar to those of 3beta-HSD2. Our model also predicts that Gln240 in 3beta-HSD1 and Arg240 in 3beta-HSD2 may be responsible for the 3-fold higher affinity of the type 1 isomerase activity for substrate steroid and cofactors. The Q240R1 mutation increases the isomerase substrate Km by 2.2-fold to a value similar to that of 3beta-HSD2 isomerase and abolishes the allosteric activation of isomerase by NADH. The R240Q2 mutation converts the isomerase substrate, cofactor, and inhibitor kinetic profiles to the 4-14-fold higher affinity profiles of 3beta-HSD1. Thus, key structural reasons for the substantially higher affinities of 3beta-HSD1 for substrates, coenzymes, and inhibitors have been identified. These structure and function relationships can be used in future docking studies to design better inhibitors of the 3beta-HSD1 that may be useful in the treatment of hormone-sensitive cancers and preterm labor.
3β-羟基类固醇脱氢酶/异构酶(3β-HSD1和3β-HSD2)的人类1型(胎盘、乳腺肿瘤和前列腺肿瘤)和2型(肾上腺和性腺)同工型由两个不同的基因编码,这些基因以组织特异性模式表达。我们最近的研究表明,与在其他方面相同的催化结构域中含有Tyr156的人类3β-HSD2相比,His156使3β-HSD1对底物和抑制剂类固醇表现出高14倍的亲和力。我们的人类3β-HSD结构模型将His156或Tyr156定位在酶同二聚体的亚基界面中。该模型预测,在3β-HSD1中,一个酶亚基上的Gln105与另一个亚基上的His156相互作用的可能性高于与3β-HSD2中的Tyr156相互作用的可能性。3β-HSD1的Q105M突变体(Q105M1)将3β-HSD底物的米氏常数(Km)以及依普斯坦和曲洛斯坦的抑制常数(Ki)转变为针对野生型3β-HSD2和H156Y1所测得的低得多的亲和力谱。然而,Q105M2突变体保留了与3β-HSD2相似的底物和抑制剂动力学谱。我们的模型还预测,3β-HSD1中的Gln240和3β-HSD2中的Arg240可能是1型异构酶活性对底物类固醇和辅因子具有高3倍亲和力的原因。Q240R1突变使异构酶底物Km增加2.2倍,达到与3β-HSD2异构酶相似的值,并消除了NADH对异构酶的变构激活。R240Q2突变将异构酶底物、辅因子和抑制剂的动力学谱转变为3β-HSD1的高4至14倍的亲和力谱。因此,已经确定了3β-HSD1对底物、辅酶和抑制剂具有显著更高亲和力的关键结构原因。这些结构与功能关系可用于未来的对接研究,以设计出可能对治疗激素敏感性癌症和早产有用的更好的3β-HSD1抑制剂。