Ghirardi M L, King P W, Posewitz M C, Maness P Ching, Fedorov A, Kim K, Cohen J, Schulten K, Seibert M
National Renewable Energy Laboratory, Golden, CO, USA.
Biochem Soc Trans. 2005 Feb;33(Pt 1):70-2. doi: 10.1042/BST0330070.
The development of efficient biological systems for the direct photoproduction of H(2) gas from water faces several challenges, the more serious of which is the sensitivity of the H(2)-evolving enzymes (hydrogenases) to O(2), an obligatory by-product of photosynthesis. This high sensitivity is common to both FeFe and NiFe hydrogenases, and is caused by O(2) binding to their respective metallocatalytic sites. This overview describes approaches to (i) molecular engineering of algal FeFe-hydrogenase to prevent O(2) access to its catalytic site; (ii) transform a cyanobacterium with an O(2)-tolerant bacterial NiFe hydrogenase or (c) partially inactivate algal O(2)-evolution activity to create physiologically anaerobiosis and induce hydrogenase expression.
开发从水中直接光催化生产氢气的高效生物系统面临着诸多挑战,其中较为严峻的是产氢酶(氢化酶)对氧气的敏感性,而氧气是光合作用的必然副产物。铁铁氢化酶和镍铁氢化酶都具有这种高敏感性,这是由氧气与它们各自的金属催化位点结合所致。本综述描述了以下几种方法:(i)对藻类铁铁氢化酶进行分子工程改造,以防止氧气进入其催化位点;(ii)用耐氧细菌镍铁氢化酶转化蓝细菌;或(iii)部分灭活藻类的放氧活性,以创造生理上的厌氧环境并诱导氢化酶表达。