Suppr超能文献

莱茵衣藻缺乏氢化酶活性突变体中揭示的厌氧代谢灵活性。

Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity.

作者信息

Dubini Alexandra, Mus Florence, Seibert Michael, Grossman Arthur R, Posewitz Matthew C

机构信息

Environmental Science and Engineering Division, Colorado School of Mines, Golden, Colorado 80401, USA.

出版信息

J Biol Chem. 2009 Mar 13;284(11):7201-13. doi: 10.1074/jbc.M803917200. Epub 2008 Dec 31.

Abstract

The green alga Chlamydomonas reinhardtii has a network of fermentation pathways that become active when cells acclimate to anoxia. Hydrogenase activity is an important component of this metabolism, and we have compared metabolic and regulatory responses that accompany anaerobiosis in wild-type C. reinhardtii cells and a null mutant strain for the HYDEF gene (hydEF-1 mutant), which encodes an [FeFe] hydrogenase maturation protein. This mutant has no hydrogenase activity and exhibits elevated accumulation of succinate and diminished production of CO2 relative to the parental strain during dark, anaerobic metabolism. In the absence of hydrogenase activity, increased succinate accumulation suggests that the cells activate alternative pathways for pyruvate metabolism, which contribute to NAD(P)H reoxidation, and continued glycolysis and fermentation in the absence of O2. Fermentative succinate production potentially proceeds via the formation of malate, and increases in the abundance of mRNAs encoding two malate-forming enzymes, pyruvate carboxylase and malic enzyme, are observed in the mutant relative to the parental strain following transfer of cells from oxic to anoxic conditions. Although C. reinhardtii has a single gene encoding pyruvate carboxylase, it has six genes encoding putative malic enzymes. Only one of the malic enzyme genes, MME4, shows a dramatic increase in expression (mRNA abundance) in the hydEF-1 mutant during anaerobiosis. Furthermore, there are marked increases in transcripts encoding fumarase and fumarate reductase, enzymes putatively required to convert malate to succinate. These results illustrate the marked metabolic flexibility of C. reinhardtii and contribute to the development of an informed model of anaerobic metabolism in this and potentially other algae.

摘要

莱茵衣藻这种绿藻具有一个发酵途径网络,当细胞适应缺氧环境时该网络会变得活跃。氢化酶活性是这种代谢的一个重要组成部分,我们比较了野生型莱茵衣藻细胞和编码[FeFe]氢化酶成熟蛋白的HYDEF基因的缺失突变株(hydEF - 1突变体)在无氧状态下的代谢和调控反应。相对于亲本菌株,该突变体在黑暗厌氧代谢过程中没有氢化酶活性,琥珀酸积累增加,二氧化碳产生减少。在没有氢化酶活性的情况下,琥珀酸积累增加表明细胞激活了丙酮酸代谢的替代途径,这有助于NAD(P)H的再氧化,并且在无氧条件下持续进行糖酵解和发酵。发酵性琥珀酸的产生可能通过苹果酸的形成进行,在细胞从有氧条件转移到无氧条件后,相对于亲本菌株,在突变体中观察到编码两种形成苹果酸的酶(丙酮酸羧化酶和苹果酸酶)的mRNA丰度增加。尽管莱茵衣藻只有一个编码丙酮酸羧化酶的基因,但它有六个编码假定苹果酸酶的基因。在无氧状态下,只有一个苹果酸酶基因MME4在hydEF - 1突变体中的表达(mRNA丰度)显著增加。此外,编码富马酸酶和富马酸还原酶(据推测是将苹果酸转化为琥珀酸所需的酶)的转录本也显著增加。这些结果说明了莱茵衣藻显著的代谢灵活性,并有助于建立关于这种以及其他潜在藻类厌氧代谢的深入模型。

相似文献

1
Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity.
J Biol Chem. 2009 Mar 13;284(11):7201-13. doi: 10.1074/jbc.M803917200. Epub 2008 Dec 31.
2
Identification of genes required for hydrogenase activity in Chlamydomonas reinhardtii.
Biochem Soc Trans. 2005 Feb;33(Pt 1):102-4. doi: 10.1042/BST0330102.
4
A mutant in the ADH1 gene of Chlamydomonas reinhardtii elicits metabolic restructuring during anaerobiosis.
Plant Physiol. 2012 Mar;158(3):1293-305. doi: 10.1104/pp.111.191569. Epub 2012 Jan 23.
6
Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase.
J Biol Chem. 2004 Jun 11;279(24):25711-20. doi: 10.1074/jbc.M403206200. Epub 2004 Apr 13.
7
Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii.
Plant Cell. 2004 Aug;16(8):2151-63. doi: 10.1105/tpc.104.021972. Epub 2004 Jul 21.

引用本文的文献

1
Weak acids produced during anaerobic respiration suppress both photosynthesis and aerobic respiration.
Nat Commun. 2023 Jul 14;14(1):4207. doi: 10.1038/s41467-023-39898-0.
3
Water oxidation by photosystem II is the primary source of electrons for sustained H photoproduction in nutrient-replete green algae.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29629-29636. doi: 10.1073/pnas.2009210117. Epub 2020 Nov 9.
4
Algae-Bacteria Consortia as a Strategy to Enhance H Production.
Cells. 2020 May 29;9(6):1353. doi: 10.3390/cells9061353.
5
Responses of a Newly Evolved Auxotroph of Chlamydomonas to B Deprivation.
Plant Physiol. 2020 May;183(1):167-178. doi: 10.1104/pp.19.01375. Epub 2020 Feb 20.
6
Ferredoxin5 Deletion Affects Metabolism of Algae during the Different Phases of Sulfur Deprivation.
Plant Physiol. 2019 Oct;181(2):426-441. doi: 10.1104/pp.19.00457. Epub 2019 Jul 26.
7
Repeat proteins as versatile scaffolds for arrays of redox-active FeS clusters.
Chem Commun (Camb). 2019 Mar 14;55(23):3319-3322. doi: 10.1039/c8cc06827e.
8
Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation.
Nat Geosci. 2017 Jan;10(1):30-35. doi: 10.1038/ngeo2843. Epub 2016 Nov 28.
9
Concerted Up-regulation of Aldehyde/Alcohol Dehydrogenase (ADHE) and Starch in Increases Survival under Dark Anoxia.
J Biol Chem. 2017 Feb 10;292(6):2395-2410. doi: 10.1074/jbc.M116.766048. Epub 2016 Dec 22.

本文引用的文献

1
Oxygen sensitivity of algal H2- production.
Appl Biochem Biotechnol. 1997 Spring;63-65:141-51. doi: 10.1007/BF02920420.
2
Biofuels from microalgae.
Biotechnol Prog. 2008 Jul-Aug;24(4):815-20. doi: 10.1021/bp070371k.
3
Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up.
Physiol Plant. 2007 Sep;131(1):10-21. doi: 10.1111/j.1399-3054.2007.00924.x.
5
Hydrogen fuel production by transgenic microalgae.
Adv Exp Med Biol. 2007;616:110-21. doi: 10.1007/978-0-387-75532-8_10.
7
Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways.
J Biol Chem. 2007 Aug 31;282(35):25475-86. doi: 10.1074/jbc.M701415200. Epub 2007 Jun 12.
9
The impact of genome analyses on our understanding of ammonia-oxidizing bacteria.
Annu Rev Microbiol. 2007;61:503-28. doi: 10.1146/annurev.micro.61.080706.093449.
10
In vitro activation of [FeFe] hydrogenase: new insights into hydrogenase maturation.
J Biol Inorg Chem. 2007 May;12(4):443-7. doi: 10.1007/s00775-007-0224-z. Epub 2007 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验