Suppr超能文献

疏水性化学物质鱼类生物富集因子预测的改进

Improved prediction of fish bioconcentration factor of hydrophobic chemicals.

作者信息

Dearden J C, Shinnawei N M

机构信息

School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool L3 3AF England, UK.

出版信息

SAR QSAR Environ Res. 2004 Oct-Dec;15(5-6):449-55. doi: 10.1080/10629360412331297489.

Abstract

Using a large heterogeneous data-set of 640 organic chemicals, we have developed predictive Quantitative Structure-Activity Relationship models for fish bioconcentration factor (BCF). For 539 chemicals with a log Kow (octanol-water partition coefficient) range of -2.3 to 6.0, we developed a model with r2 = 0.664 and a standard error of 0.661; the primary descriptor was log Kow, and others were polarisability, number of amino groups, hydrogen bond acceptor ability and a molecular shape factor. For 101 chemicals with a log Kow range of 6.0-12.7, we developed a model with r2 = 0.710 and a standard error of 0.777; the descriptors were aqueous solubility (reflecting the importance of this property in governing uptake from aqueous solution), polarity, polarisability, hydrogen bond donor ability and molecular size. Bearing in mind the very great range of BCF values of highly hydrophobic chemicals, our model offers good predictivity of this important environmental property.

摘要

利用包含640种有机化学品的大型异质数据集,我们开发了鱼类生物富集因子(BCF)的预测性定量构效关系模型。对于539种log Kow(正辛醇 - 水分配系数)范围为 -2.3至6.0的化学品,我们开发了一个r2 = 0.664且标准误差为0.661的模型;主要描述符是log Kow,其他描述符包括极化率、氨基数量、氢键受体能力和分子形状因子。对于101种log Kow范围为6.0 - 12.7的化学品,我们开发了一个r2 = 0.710且标准误差为0.777的模型;描述符包括水溶性(反映该属性在控制从水溶液中摄取方面的重要性)、极性、极化率、氢键供体能力和分子大小。考虑到高度疏水化学品的BCF值范围非常大,我们的模型为这一重要环境属性提供了良好的预测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验