Suppr超能文献

N-甲基-D-天冬氨酸受体拮抗剂治疗对大鼠大脑中与精神分裂症相关区域c-fos表达的影响。

Effects of NMDA-receptor antagonist treatment on c-fos expression in rat brain areas implicated in schizophrenia.

作者信息

Väisänen Jussi, Ihalainen Jouni, Tanila Heikki, Castrén Eero

机构信息

A.I. Virtanen Institute, University of Kuopio, Kuopio, Finland.

出版信息

Cell Mol Neurobiol. 2004 Dec;24(6):769-80. doi: 10.1007/s10571-004-6918-7.

Abstract
  1. The noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists produce behavioral responses that closely resemble both positive and negative symptoms of schizophrenia. These drugs also induce excitatory and neurotoxic effects in limbic cortical areas. 2. We have here mapped the brain areas which show increased activity in response to noncompetitive NMDA-receptor antagonist administration concentrating especially to those brain areas that have been suggested to be relevant in the pathophysiology of schizophrenia. 3. Rats were treated intraperitoneally with a NMDA-receptor antagonist MK801 and activation of brain areas was detected by monitoring the expression of c-fos mRNA by using in situ hybridization. 4. MK801 induced c-fos mRNA expression of in the retrosplenial, entorhinal, and prefrontal cortices. Lower c-fos expression was observed in the layer IV of the parietal and frontal cortex. In the thalamus, c-fos mRNA expression was detected in the midline nuclei and in the reticular nucleus but not in the dorsomedial nucleus. In addition, c-fos mRNA was expressed in the anterior olfactory nucleus, the ventral tegmental area, and in cerebellar granule neurons. 5. NMDA-receptor antagonist ketamine increased dopamine release in the parietal cortex, in the region where NMDA-receptor antagonist increased c-fos mRNA expression. 6. Thus, the psychotropic NMDA-receptor antagonist induced c-fos mRNA expression in most, but not all, brain areas implicated in the pathophysiology of schizophrenia. The high spatial resolution of in situ hybridization may help to define regions of interest for human imaging studies.
摘要
  1. 非竞争性N-甲基-D-天冬氨酸(NMDA)受体拮抗剂所产生的行为反应与精神分裂症的阳性和阴性症状极为相似。这些药物还会在边缘皮质区域诱发兴奋和神经毒性作用。2. 我们在此绘制了在给予非竞争性NMDA受体拮抗剂后显示活动增加的脑区图谱,特别关注那些被认为与精神分裂症病理生理学相关的脑区。3. 给大鼠腹腔注射NMDA受体拮抗剂MK801,并通过原位杂交监测c-fos mRNA的表达来检测脑区的激活情况。4. MK801诱导了 retrosplenial、内嗅和前额叶皮质中c-fos mRNA的表达。在顶叶和额叶皮质的IV层观察到较低的c-fos表达。在丘脑中,在中线核和网状核中检测到c-fos mRNA表达,但在背内侧核中未检测到。此外,c-fos mRNA在前嗅核、腹侧被盖区和小脑颗粒神经元中表达。5. NMDA受体拮抗剂氯胺酮增加了顶叶皮质中多巴胺释放,该区域是NMDA受体拮抗剂增加c-fos mRNA表达的区域。6. 因此,精神otropic NMDA受体拮抗剂在大多数但并非所有与精神分裂症病理生理学相关的脑区诱导了c-fos mRNA表达。原位杂交的高空间分辨率可能有助于确定人类成像研究的感兴趣区域。

相似文献

引用本文的文献

1
NMDA receptor antagonist induced c-Fos expression in the medial entorhinal cortex during postnatal development.
Front Neural Circuits. 2025 Jul 29;19:1619534. doi: 10.3389/fncir.2025.1619534. eCollection 2025.
2
Neuroprotective effects of MK-801 against cerebral ischemia reperfusion.
Heliyon. 2024 Jun 28;10(13):e33821. doi: 10.1016/j.heliyon.2024.e33821. eCollection 2024 Jul 15.
3
A Functional Schizophrenia-associated genetic variant near the and genes.
bioRxiv. 2023 Dec 18:2023.12.18.570831. doi: 10.1101/2023.12.18.570831.
4
Ketamine evoked disruption of entorhinal and hippocampal spatial maps.
Nat Commun. 2023 Oct 7;14(1):6285. doi: 10.1038/s41467-023-41750-4.
5
Early- and late-phase changes of brain activity and early-phase neuromodulation in the posttraumatic stress disorder rat model.
Neurobiol Stress. 2023 Jul 22;26:100554. doi: 10.1016/j.ynstr.2023.100554. eCollection 2023 Sep.
7
Ketamine evoked disruption of entorhinal and hippocampal spatial maps.
bioRxiv. 2023 Feb 6:2023.02.05.527227. doi: 10.1101/2023.02.05.527227.
8
Sustained MK-801 induced deficit in a novel probabilistic reversal learning task.
Front Pharmacol. 2022 Oct 14;13:898548. doi: 10.3389/fphar.2022.898548. eCollection 2022.
9
Midazolam Attenuates Esketamine-Induced Overactive Behaviors in Mice Before the Sedation, but Not During the Recovery.
Front Vet Sci. 2022 Apr 11;9:829747. doi: 10.3389/fvets.2022.829747. eCollection 2022.
10
A Single Low Dose of Dexmedetomidine Efficiently Attenuates Esketamine-Induced Overactive Behaviors and Neuronal Hyperactivities in Mice.
Front Hum Neurosci. 2021 Oct 12;15:735569. doi: 10.3389/fnhum.2021.735569. eCollection 2021.

本文引用的文献

2
Connecting the "dots" of brain dysfunction in schizophrenia: what does the picture look like?
Arch Gen Psychiatry. 1999 Sep;56(9):791-3. doi: 10.1001/archpsyc.56.9.791.
3
A unitary model of schizophrenia: Bleuler's "fragmented phrene" as schizencephaly.
Arch Gen Psychiatry. 1999 Sep;56(9):781-7. doi: 10.1001/archpsyc.56.9.781.
4
Glutamate receptor function in learning and memory.
Behav Brain Res. 2003 Mar 18;140(1-2):1-47. doi: 10.1016/s0166-4328(02)00272-3.
5
Pathogenesis of schizophrenia: Part II. Temporo-frontal two-step hypothesis.
Psychiatry Clin Neurosci. 2003 Feb;57(1):9-15. doi: 10.1046/j.1440-1819.2003.01073.x.
6
Pathogenesis of schizophrenia: Part I. Symptomatology, cognitive characteristics and brain morphology.
Psychiatry Clin Neurosci. 2003 Feb;57(1):3-8. doi: 10.1046/j.1440-1819.2003.01072.x.
7
Distinct pattern of c-fos mRNA expression after systemic and intra-accumbens amphetamine and MK-801.
Neuroscience. 2002;115(1):67-78. doi: 10.1016/s0306-4522(02)00415-3.
8
Ketamine impairs multiple cognitive domains in rhesus monkeys.
Drug Alcohol Depend. 2002 Oct 1;68(2):175-87. doi: 10.1016/s0376-8716(02)00194-1.
9
Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update.
J Psychosom Res. 2002 Aug;53(2):647-54. doi: 10.1016/s0022-3999(02)00428-2.
10
In vivo regulation of dopamine and noradrenaline release by alpha2A-adrenoceptors in the mouse prefrontal cortex.
Eur J Neurosci. 2002 Jun;15(11):1789-94. doi: 10.1046/j.1460-9568.2002.02014.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验