Suppr超能文献

基于宏观电流的离子通道动力学最大似然估计

Maximum likelihood estimation of ion channel kinetics from macroscopic currents.

作者信息

Milescu Lorin S, Akk Gustav, Sachs Frederick

机构信息

Department of Physiology and Biophysics, State University of New York, Buffalo, New York, USA.

出版信息

Biophys J. 2005 Apr;88(4):2494-515. doi: 10.1529/biophysj.104.053256. Epub 2005 Jan 28.

Abstract

We describe a maximum likelihood method for direct estimation of rate constants from macroscopic ion channel data for kinetic models of arbitrary size and topology. The number of channels in the preparation, and the mean and standard deviation of the unitary current can be estimated, and a priori constraints can be imposed on rate constants. The method allows for arbitrary stimulation protocols, including stimuli with finite rise time, trains of ligand or voltage steps, and global fitting across different experimental conditions. The initial state occupancies can be optimized from the fit kinetics. Utilizing arbitrary stimulation protocols and using the mean and the variance of the current reduce or eliminate problems of model identifiability (Kienker, 1989). The algorithm is faster than a recent method that uses the full autocovariance matrix (Celentano and Hawkes, 2004), in part due to the analytical calculation of the likelihood gradients. We tested the method with simulated data and with real macroscopic currents from acetylcholine receptors, elicited in response to brief pulses of carbachol. Given appropriate stimulation protocols, our method chose a reasonable model size and topology.

摘要

我们描述了一种最大似然方法,用于从任意大小和拓扑结构的动力学模型的宏观离子通道数据中直接估计速率常数。可以估计制剂中的通道数量、单位电流的均值和标准差,并且可以对速率常数施加先验约束。该方法允许使用任意刺激方案,包括具有有限上升时间的刺激、配体或电压阶跃序列,以及跨不同实验条件的全局拟合。初始状态占有率可以根据拟合动力学进行优化。利用任意刺激方案并使用电流的均值和方差可以减少或消除模型可识别性问题(Kienker,1989)。该算法比最近一种使用完整自协方差矩阵的方法(Celentano和Hawkes,2004)更快,部分原因是似然梯度的解析计算。我们用模拟数据和对卡巴胆碱短暂脉冲产生的乙酰胆碱受体的真实宏观电流测试了该方法。给定适当的刺激方案,我们的方法选择了合理的模型大小和拓扑结构。

相似文献

1
Maximum likelihood estimation of ion channel kinetics from macroscopic currents.
Biophys J. 2005 Apr;88(4):2494-515. doi: 10.1529/biophysj.104.053256. Epub 2005 Jan 28.
2
Estimation of ion channel kinetics from fluctuations of macroscopic currents.
Biophys J. 2007 Jul 1;93(1):74-91. doi: 10.1529/biophysj.106.101212. Epub 2007 Apr 6.
3
Optimal estimation of ion-channel kinetics from macroscopic currents.
PLoS One. 2012;7(4):e35208. doi: 10.1371/journal.pone.0035208. Epub 2012 Apr 20.
4
Estimating rate constants from single ion channel currents when the initial distribution is known.
Eur Biophys J. 2005 Jun;34(4):306-13. doi: 10.1007/s00249-004-0451-y. Epub 2005 Mar 12.
5
Efficient maximum likelihood estimation of kinetic rate constants from macroscopic currents.
PLoS One. 2011;6(12):e29731. doi: 10.1371/journal.pone.0029731. Epub 2011 Dec 29.
6
Model-based fitting of single-channel dwell-time distributions.
Biophys J. 2004 Sep;87(3):1657-71. doi: 10.1529/biophysj.103.037531.
7
Maximum likelihood estimation of molecular motor kinetics from staircase dwell-time sequences.
Biophys J. 2006 Aug 15;91(4):1156-68. doi: 10.1529/biophysj.105.079541. Epub 2006 May 5.
8
A direct optimization approach to hidden Markov modeling for single channel kinetics.
Biophys J. 2000 Oct;79(4):1915-27. doi: 10.1016/S0006-3495(00)76441-1.
9
Hidden Markov modeling for single channel kinetics with filtering and correlated noise.
Biophys J. 2000 Oct;79(4):1928-44. doi: 10.1016/S0006-3495(00)76442-3.
10
Applying hidden Markov models to the analysis of single ion channel activity.
Biophys J. 2002 Apr;82(4):1930-42. doi: 10.1016/S0006-3495(02)75542-2.

引用本文的文献

1
Using Bayesian priors to overcome non-identifiablility issues in Hidden Markov models.
bioRxiv. 2025 May 5:2024.04.20.590387. doi: 10.1101/2024.04.20.590387.
2
Parameter inference for stochastic reaction models of ion channel gating from whole-cell voltage-clamp data.
Philos Trans A Math Phys Eng Sci. 2025 Mar 13;383(2292):20240224. doi: 10.1098/rsta.2024.0224.
3
Microscopic mechanism of PIEZO1 activation by pressure-induced membrane stretch.
J Gen Physiol. 2023 May 1;155(5). doi: 10.1085/jgp.202213260. Epub 2023 Jan 30.
4
Yoda1's energetic footprint on Piezo1 channels and its modulation by voltage and temperature.
Proc Natl Acad Sci U S A. 2022 Jul 19;119(29):e2202269119. doi: 10.1073/pnas.2202269119. Epub 2022 Jul 11.
5
Bayesian inference of kinetic schemes for ion channels by Kalman filtering.
Elife. 2022 May 4;11:e62714. doi: 10.7554/eLife.62714.
6
Identification of structures for ion channel kinetic models.
PLoS Comput Biol. 2021 Aug 16;17(8):e1008932. doi: 10.1371/journal.pcbi.1008932. eCollection 2021 Aug.
7
Modeling the Interactions Between Sodium Channels Provides Insight Into the Negative Dominance of Certain Channel Mutations.
Front Physiol. 2020 Nov 5;11:589386. doi: 10.3389/fphys.2020.589386. eCollection 2020.
9
Calibration of ionic and cellular cardiac electrophysiology models.
Wiley Interdiscip Rev Syst Biol Med. 2020 Jul;12(4):e1482. doi: 10.1002/wsbm.1482. Epub 2020 Feb 21.

本文引用的文献

1
Activation of heteroliganded mouse muscle nicotinic receptors.
J Physiol. 2005 Apr 15;564(Pt 2):359-76. doi: 10.1113/jphysiol.2004.078535. Epub 2005 Feb 17.
2
Use of the covariance matrix in directly fitting kinetic parameters: application to GABAA receptors.
Biophys J. 2004 Jul;87(1):276-94. doi: 10.1529/biophysj.103.036632.
3
How to impose microscopic reversibility in complex reaction mechanisms.
Biophys J. 2004 Jun;86(6):3510-8. doi: 10.1529/biophysj.103.038679.
4
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
8
Testing for detailed balance (microscopic reversibility in ion channel gating.
Biophys J. 2001 Jun;80(6):3025-6. doi: 10.1016/S0006-3495(01)76268-6.
9
Model selection in non-nested hidden Markov models for ion channel gating.
J Theor Biol. 2001 Feb 21;208(4):439-50. doi: 10.1006/jtbi.2000.2230.
10
A direct optimization approach to hidden Markov modeling for single channel kinetics.
Biophys J. 2000 Oct;79(4):1915-27. doi: 10.1016/S0006-3495(00)76441-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验