Milescu Lorin S, Akk Gustav, Sachs Frederick
Department of Physiology and Biophysics, State University of New York, Buffalo, New York, USA.
Biophys J. 2005 Apr;88(4):2494-515. doi: 10.1529/biophysj.104.053256. Epub 2005 Jan 28.
We describe a maximum likelihood method for direct estimation of rate constants from macroscopic ion channel data for kinetic models of arbitrary size and topology. The number of channels in the preparation, and the mean and standard deviation of the unitary current can be estimated, and a priori constraints can be imposed on rate constants. The method allows for arbitrary stimulation protocols, including stimuli with finite rise time, trains of ligand or voltage steps, and global fitting across different experimental conditions. The initial state occupancies can be optimized from the fit kinetics. Utilizing arbitrary stimulation protocols and using the mean and the variance of the current reduce or eliminate problems of model identifiability (Kienker, 1989). The algorithm is faster than a recent method that uses the full autocovariance matrix (Celentano and Hawkes, 2004), in part due to the analytical calculation of the likelihood gradients. We tested the method with simulated data and with real macroscopic currents from acetylcholine receptors, elicited in response to brief pulses of carbachol. Given appropriate stimulation protocols, our method chose a reasonable model size and topology.
我们描述了一种最大似然方法,用于从任意大小和拓扑结构的动力学模型的宏观离子通道数据中直接估计速率常数。可以估计制剂中的通道数量、单位电流的均值和标准差,并且可以对速率常数施加先验约束。该方法允许使用任意刺激方案,包括具有有限上升时间的刺激、配体或电压阶跃序列,以及跨不同实验条件的全局拟合。初始状态占有率可以根据拟合动力学进行优化。利用任意刺激方案并使用电流的均值和方差可以减少或消除模型可识别性问题(Kienker,1989)。该算法比最近一种使用完整自协方差矩阵的方法(Celentano和Hawkes,2004)更快,部分原因是似然梯度的解析计算。我们用模拟数据和对卡巴胆碱短暂脉冲产生的乙酰胆碱受体的真实宏观电流测试了该方法。给定适当的刺激方案,我们的方法选择了合理的模型大小和拓扑结构。