Suppr超能文献

一种用于单通道动力学的隐马尔可夫建模的直接优化方法。

A direct optimization approach to hidden Markov modeling for single channel kinetics.

作者信息

Qin F, Auerbach A, Sachs F

机构信息

Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA.

出版信息

Biophys J. 2000 Oct;79(4):1915-27. doi: 10.1016/S0006-3495(00)76441-1.

Abstract

Hidden Markov modeling (HMM) provides an effective approach for modeling single channel kinetics. Standard HMM is based on Baum's reestimation. As applied to single channel currents, the algorithm has the inability to optimize the rate constants directly. We present here an alternative approach by considering the problem as a general optimization problem. The quasi-Newton method is used for searching the likelihood surface. The analytical derivatives of the likelihood function are derived, thereby maximizing the efficiency of the optimization. Because the rate constants are optimized directly, the approach has advantages such as the allowance for model constraints and the ability to simultaneously fit multiple data sets obtained at different experimental conditions. Numerical examples are presented to illustrate the performance of the algorithm. Comparisons with Baum's reestimation suggest that the approach has a superior convergence speed when the likelihood surface is poorly defined due to, for example, a low signal-to-noise ratio or the aggregation of multiple states having identical conductances.

摘要

隐马尔可夫模型(HMM)为单通道动力学建模提供了一种有效方法。标准HMM基于鲍姆重估算法。应用于单通道电流时,该算法无法直接优化速率常数。我们在此提出一种替代方法,即将该问题视为一般优化问题。拟牛顿法用于搜索似然曲面。推导了似然函数的解析导数,从而提高了优化效率。由于直接对速率常数进行优化,该方法具有允许模型约束以及能够同时拟合在不同实验条件下获得的多个数据集等优点。给出了数值示例以说明该算法的性能。与鲍姆重估算法的比较表明,当似然曲面由于例如低信噪比或具有相同电导的多个状态的聚集而定义不明确时,该方法具有更快的收敛速度。

相似文献

1
A direct optimization approach to hidden Markov modeling for single channel kinetics.
Biophys J. 2000 Oct;79(4):1915-27. doi: 10.1016/S0006-3495(00)76441-1.
2
Hidden Markov modeling for single channel kinetics with filtering and correlated noise.
Biophys J. 2000 Oct;79(4):1928-44. doi: 10.1016/S0006-3495(00)76442-3.
3
Model-based fitting of single-channel dwell-time distributions.
Biophys J. 2004 Sep;87(3):1657-71. doi: 10.1529/biophysj.103.037531.
4
A new algorithm for idealizing single ion channel data containing multiple unknown conductance levels.
Biophys J. 1996 Mar;70(3):1303-15. doi: 10.1016/S0006-3495(96)79687-X.
5
Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events.
Biophys J. 1996 Jan;70(1):264-80. doi: 10.1016/S0006-3495(96)79568-1.
6
Single ion channel models incorporating aggregation and time interval omission.
Biophys J. 1993 Feb;64(2):357-74. doi: 10.1016/S0006-3495(93)81375-4.
7
Applying hidden Markov models to the analysis of single ion channel activity.
Biophys J. 2002 Apr;82(4):1930-42. doi: 10.1016/S0006-3495(02)75542-2.
8
Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling.
Biophys J. 2004 Mar;86(3):1488-501. doi: 10.1016/S0006-3495(04)74217-4.

引用本文的文献

2
A deep learning approach to real-time Markov modeling of ion channel gating.
Commun Chem. 2024 Nov 30;7(1):280. doi: 10.1038/s42004-024-01369-y.
6
Single-molecule imaging reveals allosteric stimulation of SARS-CoV-2 spike receptor binding domain by host sialic acid.
Sci Adv. 2024 Jul 19;10(29):eadk4920. doi: 10.1126/sciadv.adk4920. Epub 2024 Jul 17.
9
Estimating the Ca Block of NMDA Receptors with Single-Channel Electrophysiology.
Methods Mol Biol. 2024;2799:151-175. doi: 10.1007/978-1-0716-3830-9_9.
10
Increasing the accuracy of single-molecule data analysis using tMAVEN.
Biophys J. 2024 Sep 3;123(17):2765-2780. doi: 10.1016/j.bpj.2024.01.022. Epub 2024 Jan 24.

本文引用的文献

1
A re-examination of adult mouse nicotinic acetylcholine receptor channel activation kinetics.
J Physiol. 1999 Apr 15;516 ( Pt 2)(Pt 2):315-30. doi: 10.1111/j.1469-7793.1999.0315v.x.
2
How powerful is the dwell-time analysis of multichannel records?
J Membr Biol. 1998 Sep 1;165(1):19-35. doi: 10.1007/s002329900417.
3
Maximum likelihood estimation of aggregated Markov processes.
Proc Biol Sci. 1997 Mar 22;264(1380):375-83. doi: 10.1098/rspb.1997.0054.
4
Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events.
Biophys J. 1996 Jan;70(1):264-80. doi: 10.1016/S0006-3495(96)79568-1.
5
Estimating kinetic constants from single channel data.
Biophys J. 1983 Aug;43(2):207-23. doi: 10.1016/S0006-3495(83)84341-0.
6
On the stochastic properties of single ion channels.
Proc R Soc Lond B Biol Sci. 1981 Mar 6;211(1183):205-35. doi: 10.1098/rspb.1981.0003.
7
Equivalence of aggregated Markov models of ion-channel gating.
Proc R Soc Lond B Biol Sci. 1989 Apr 22;236(1284):269-309. doi: 10.1098/rspb.1989.0024.
9
A general solution to the time interval omission problem applied to single channel analysis.
Biophys J. 1985 Jul;48(1):149-58. doi: 10.1016/S0006-3495(85)83768-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验