Suppr超能文献

钙调蛋白依赖性激酶激酶/钙调蛋白激酶I的活性控制细胞外调节激酶依赖性的长时程增强。

Calmodulin-dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation.

作者信息

Schmitt John M, Guire Eric S, Saneyoshi Takeo, Soderling Thomas R

机构信息

Vollum Institute, Oregon Health and Sciences University, Portland, Oregon 97239, USA.

出版信息

J Neurosci. 2005 Feb 2;25(5):1281-90. doi: 10.1523/JNEUROSCI.4086-04.2005.

Abstract

Intracellular Ca2+ and protein phosphorylation play pivotal roles in long-term potentiation (LTP), a cellular model of learning and memory. Ca2+ regulates multiple intracellular pathways, including the calmodulin-dependent kinases (CaMKs) and the ERKs (extracellular signal-regulated kinases), both of which are required for LTP. However, the mechanism by which Ca2+ activates ERK during LTP remains unknown. Here, we describe a requirement for the CaMK-kinase (CaMKK) pathway upstream of ERK in LTP induction. Both the pharmacological inhibitor of CaMKK, STO-609, and dominant-negative CaMKI (dnCaMKI), a downstream target of CaMKK, blocked neuronal NMDA receptor-dependent ERK activation. In contrast, an inhibitor of CaMKII and nuclear-localized dnCaMKIV had no effect on ERK activation. NMDA receptor-dependent LTP induction robustly activated CaMKI, the Ca2+-stimulated Ras activator Ras-GRF1 (Ras-guanyl-nucleotide releasing factor), and ERK. STO-609 blocked the activation of all three enzymes during LTP without affecting basal synaptic transmission, activation of CaMKII, or cAMP-dependent activation of ERK. LTP induction itself was suppressed 50% by STO-609 in a manner identical to the ERK inhibitor U0126: either inhibitor occluded the effect of the other, suggesting they are part of the same signaling pathway in LTP induction. STO-609 also suppressed regulatory phosphorylation of two downstream ERK targets during LTP, the general translation factors eIF4E (eukaryotic initiation factor 4) and its binding protein 4E-BP1 (eukaryotic initiation factor 4E-binding protein 1). These data indicate an essential role for CaMKK and CaMKI to link NMDA receptor-mediated Ca2+ elevation with ERK-dependent LTP.

摘要

细胞内钙离子(Ca2+)和蛋白质磷酸化在长时程增强(LTP)中起关键作用,LTP是学习和记忆的一种细胞模型。Ca2+调节多种细胞内信号通路,包括钙调蛋白依赖性激酶(CaMKs)和细胞外信号调节激酶(ERKs),这两者都是LTP所必需的。然而,在LTP过程中Ca2+激活ERK的机制仍然未知。在此,我们描述了在LTP诱导中ERK上游的CaMK激酶(CaMKK)信号通路的必要性。CaMKK的药理学抑制剂STO-609和CaMKK的下游靶点显性负性CaMKI(dnCaMKI)均阻断了神经元NMDA受体依赖性ERK激活。相反,CaMKII抑制剂和核定位的dnCaMKIV对ERK激活没有影响。NMDA受体依赖性LTP诱导强烈激活CaMKI、Ca2+刺激的Ras激活剂Ras-GRF1(Ras-鸟苷酸释放因子)和ERK。STO-609在不影响基础突触传递、CaMKII激活或ERK的cAMP依赖性激活的情况下,阻断了LTP过程中所有这三种酶的激活。STO-609以与ERK抑制剂U0126相同的方式将LTP诱导本身抑制了50%:任何一种抑制剂都能阻断另一种抑制剂的作用,这表明它们是LTP诱导中同一信号通路的一部分。STO-609还抑制了LTP过程中两个ERK下游靶点的调节性磷酸化,即通用翻译因子eIF4E(真核起始因子4)及其结合蛋白4E-BP1(真核起始因子4E结合蛋白1)。这些数据表明CaMKK和CaMKI在将NMDA受体介导的Ca2+升高与ERK依赖性LTP联系起来方面起着至关重要的作用。

相似文献

2
Calcium activation of ERK mediated by calmodulin kinase I.
J Biol Chem. 2004 Jun 4;279(23):24064-72. doi: 10.1074/jbc.M401501200. Epub 2004 Mar 29.
3
Regulation of axonal extension and growth cone motility by calmodulin-dependent protein kinase I.
J Neurosci. 2004 Apr 14;24(15):3786-94. doi: 10.1523/JNEUROSCI.3294-03.2004.
5
Activity-dependent NMDA receptor-mediated activation of protein kinase B/Akt in cortical neuronal cultures.
J Neurochem. 2002 Sep;82(5):1097-105. doi: 10.1046/j.1471-4159.2002.01031.x.
6
9
Novel translational control in Arc-dependent long term potentiation consolidation in vivo.
J Biol Chem. 2009 Nov 13;284(46):31498-511. doi: 10.1074/jbc.M109.056077. Epub 2009 Sep 15.

引用本文的文献

1
Windows of change: Revisiting temporal and molecular dynamics of memory reconsolidation and persistence.
Neurosci Biobehav Rev. 2025 Jul;174:106198. doi: 10.1016/j.neubiorev.2025.106198. Epub 2025 May 10.
2
Neuronal activation in the axolotl brain promotes tail regeneration.
NPJ Regen Med. 2025 May 8;10(1):22. doi: 10.1038/s41536-025-00413-2.
4
CaMKK2 as an emerging treatment target for bipolar disorder.
Mol Psychiatry. 2023 Nov;28(11):4500-4511. doi: 10.1038/s41380-023-02260-3. Epub 2023 Sep 20.
5
CaMK1D signalling in AgRP neurons promotes ghrelin-mediated food intake.
Nat Metab. 2023 Jun;5(6):1045-1058. doi: 10.1038/s42255-023-00814-x. Epub 2023 Jun 5.
6
Appraisal of the Neuroprotective Effect of Dexmedetomidine: A Meta-Analysis.
Adv Exp Med Biol. 2023;1408:163-181. doi: 10.1007/978-3-031-26163-3_9.
7
Upregulation of RasGRF1 ameliorates spatial cognitive dysfunction in mice after chronic cerebral hypoperfusion.
Aging (Albany NY). 2023 Apr 12;15(8):2999-3020. doi: 10.18632/aging.204654.
9
Molecular Mechanisms Underlying Ca/Calmodulin-Dependent Protein Kinase Kinase Signal Transduction.
Int J Mol Sci. 2022 Sep 20;23(19):11025. doi: 10.3390/ijms231911025.
10
Involvement of calmodulin-dependent protein kinase I in the regulation of the expression of connexin 43 in MA-10 tumor Leydig cells.
Mol Cell Biochem. 2023 Apr;478(4):791-805. doi: 10.1007/s11010-022-04553-7. Epub 2022 Sep 12.

本文引用的文献

2
Calcium/calmodulin-dependent protein kinase II and synaptic plasticity.
Curr Opin Neurobiol. 2004 Jun;14(3):318-27. doi: 10.1016/j.conb.2004.05.008.
3
Mitogen-activated protein kinases in synaptic plasticity and memory.
Curr Opin Neurobiol. 2004 Jun;14(3):311-7. doi: 10.1016/j.conb.2004.04.001.
4
Calcium activation of ERK mediated by calmodulin kinase I.
J Biol Chem. 2004 Jun 4;279(23):24064-72. doi: 10.1074/jbc.M401501200. Epub 2004 Mar 29.
5
Regulation of axonal extension and growth cone motility by calmodulin-dependent protein kinase I.
J Neurosci. 2004 Apr 14;24(15):3786-94. doi: 10.1523/JNEUROSCI.3294-03.2004.
6
Developmentally regulated role for Ras-GRFs in coupling NMDA glutamate receptors to Ras, Erk and CREB.
EMBO J. 2004 Apr 7;23(7):1567-75. doi: 10.1038/sj.emboj.7600151. Epub 2004 Mar 18.
7
Translational control by MAPK signaling in long-term synaptic plasticity and memory.
Cell. 2004 Feb 6;116(3):467-79. doi: 10.1016/s0092-8674(04)00115-1.
8
MAPK cascade signalling and synaptic plasticity.
Nat Rev Neurosci. 2004 Mar;5(3):173-83. doi: 10.1038/nrn1346.
9
Regulation of the neuron-specific Ras GTPase-activating protein, synGAP, by Ca2+/calmodulin-dependent protein kinase II.
J Biol Chem. 2004 Apr 23;279(17):17980-8. doi: 10.1074/jbc.M314109200. Epub 2004 Feb 17.
10
Activation of H-Ras in the endoplasmic reticulum by the RasGRF family guanine nucleotide exchange factors.
Mol Cell Biol. 2004 Feb;24(4):1516-30. doi: 10.1128/MCB.24.4.1516-1530.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验