Pais Tiago M, Lamosa Pedro, dos Santos Wagner, Legall Jean, Turner David L, Santos Helena
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal.
FEBS J. 2005 Feb;272(4):999-1011. doi: 10.1111/j.1742-4658.2004.04534.x.
Despite their high sequence homology, rubredoxins from Desulfovibrio gigas and D. desulfuricans are stabilized to very different extents by compatible solutes such as diglycerol phosphate, the major osmolyte in the hyperthermophilic archaeon Archaeoglobus fulgidus[Lamosa P, Burke A, Peist R, Huber R, Liu M Y, Silva G, Rodrigues-Pousada C, LeGall J, Maycock C and Santos H (2000) Appl Environ Microbiol66, 1974-1979]. The principal structural difference between these two proteins is the absence of the hairpin loop in the rubredoxin from D. desulfuricans. Therefore, mutants of D. gigas rubredoxin bearing deletions in the loop region were constructed to investigate the importance of this structural feature on protein intrinsic stability, as well as on its capacity to undergo stabilization by compatible solutes. The three-dimensional structure of the mutant bearing the largest deletion, Delta17/29, was determined by 1H-NMR, demonstrating that, despite the drastic deletion, the main structural features were preserved. The dependence of the NH chemical shifts on temperature and solute concentration (diglycerol phosphate or mannosylglycerate) provide evidence of subtle conformational changes induced by the solute. The kinetic stability (as assessed from the absorption decay at 494 nm) of six mutant rubredoxins was determined at 90 degrees C and the stabilizing effect exerted by both solutes was assessed. The extent of protection conferred by each solute was highly dependent on the specific mutant examined: while the half-life for iron release in the wild-type D. gigas rubredoxin increased threefold in the presence of 0.1 M diglycerol phosphate, mutant Delta23/29 was destabilized. This study provides evidence for solute-induced compaction of the protein structure and occurrence of weak, specific interactions with the protein surface. The relevance of these findings to our understanding of the molecular basis for protein stabilization is discussed.
尽管巨大脱硫弧菌(Desulfovibrio gigas)和脱硫脱硫弧菌(D. desulfuricans)的红素氧还蛋白具有高度的序列同源性,但它们在诸如磷酸二甘油等相容性溶质的作用下,稳定程度却大不相同。磷酸二甘油是嗜热古菌富铁嗜热栖热菌(Archaeoglobus fulgidus)中的主要渗透溶质[拉莫萨P,伯克A,佩斯特R,胡伯R,刘M Y,席尔瓦G,罗德里格斯 - 波萨达C,勒加尔J,梅科克C和桑托斯H(2000年),《应用与环境微生物学》66,1974 - 1979页]。这两种蛋白质的主要结构差异在于脱硫脱硫弧菌的红素氧还蛋白中不存在发夹环。因此,构建了巨大脱硫弧菌红素氧还蛋白在环区域有缺失的突变体,以研究这一结构特征对蛋白质固有稳定性以及其被相容性溶质稳定化能力的重要性。通过1H - NMR确定了缺失最大的突变体Delta17/29的三维结构,结果表明,尽管有剧烈的缺失,但主要结构特征得以保留。NH化学位移对温度和溶质浓度(磷酸二甘油或甘露糖基甘油酸)的依赖性提供了溶质诱导细微构象变化的证据。在90℃下测定了六种突变体红素氧还蛋白的动力学稳定性(通过494nm处的吸收衰减评估),并评估了两种溶质所发挥的稳定作用。每种溶质赋予的保护程度高度依赖于所检测的特定突变体:在0.1M磷酸二甘油存在下,野生型巨大脱硫弧菌红素氧还蛋白中铁释放的半衰期增加了三倍,而突变体Delta23/29却变得不稳定。这项研究为溶质诱导的蛋白质结构压缩以及与蛋白质表面发生弱的特异性相互作用提供了证据。讨论了这些发现与我们对蛋白质稳定化分子基础理解的相关性。