一篇警句体(缩略版)叙述,讲述了线粒体中与一氧化氮和活性氧相关的无数惊人行为及可怕后果的故事,并附带一篇关于细胞凋亡起源的附言。

An epigrammatic (abridged) recounting of the myriad tales of astonishing deeds and dire consequences pertaining to nitric oxide and reactive oxygen species in mitochondria with an ancillary missive concerning the origins of apoptosis.

作者信息

Heck Diane E, Kagan Valerian E, Shvedova Anna A, Laskin Jeffrey D

机构信息

Departments of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA.

出版信息

Toxicology. 2005 Mar 15;208(2):259-71. doi: 10.1016/j.tox.2004.11.027.

Abstract

Mitochondria play a central role in the life and death of cells. These organelles serve as the major energy-producing power-house, whereby the generation of ATP is associated with the utilization of molecular oxygen. A significant fraction (2-3%) of molecular oxygen consumed by mitochondria may be reduced in a one-electron fashion to yield a series of reactive oxygen species (ROS) such as superoxide anion radical, hydrogen peroxide, and hydroxyl radical. ROS are capable of damaging components of the electron transport apparatus and can, in turn, disrupt mitochondrial functioning, limiting cellular ATP levels and ultimately resulting in cell death. ROS-induced disruption of electron transport can perpetuate production of deleterious ROS and propagate mitochondrial damage. Consequently, mitochondria are highly enriched with water-soluble and lipid-soluble antioxidants (glutathione, ascorbate, Vitamin E, and coenzyme Q) and antioxidant enzymes, such as superoxide dismutase, glutathione peroxidase, catalase, thioredoxins, and peroxiredoxin. Another important antioxidant acting as a very effective scavenger of reactive lipid (peroxyl, alkoxyl) radicals is nitric oxide (NO) generated by mitochondrial nitric oxide synthase. However, NO can also be very disruptive to mitochondria function, a process facilitated by its high reactivity with superoxide. This interaction results in the formation of peroxynitrite, an oxidant capable of causing oxidative/nitrosative stress, further aggravating mitochondrial dysfunction, causing ATP depletion and damage to cells. Thus, in the most general sense, the effects of NO in mitochondria may be either protective or deleterious depending on specific conditions of local redox environment (redox potential, ratio of oxidized to reduced glutathione, transition metals, and the presence of other oxygen- and nitrogen-centered radicals).

摘要

线粒体在细胞的生死过程中起着核心作用。这些细胞器是主要的能量产生动力源,ATP的生成与分子氧的利用相关。线粒体消耗的分子氧中有相当一部分(2%-3%)可能以单电子方式被还原,产生一系列活性氧(ROS),如超氧阴离子自由基、过氧化氢和羟基自由基。ROS能够破坏电子传递装置的组件,进而扰乱线粒体功能,限制细胞ATP水平,最终导致细胞死亡。ROS诱导的电子传递中断会使有害ROS持续产生,并加剧线粒体损伤。因此,线粒体富含水溶性和脂溶性抗氧化剂(谷胱甘肽、抗坏血酸、维生素E和辅酶Q)以及抗氧化酶,如超氧化物歧化酶、谷胱甘肽过氧化物酶、过氧化氢酶、硫氧还蛋白和过氧化物酶。另一种作为活性脂质(过氧、烷氧)自由基非常有效的清除剂的重要抗氧化剂是线粒体一氧化氮合酶产生的一氧化氮(NO)。然而,NO也可能对线粒体功能具有极大的破坏作用,这一过程因其与超氧化物的高反应性而得以促进。这种相互作用导致过氧亚硝酸根的形成,过氧亚硝酸根是一种能够引起氧化/亚硝化应激的氧化剂,会进一步加剧线粒体功能障碍,导致ATP耗竭和细胞损伤。因此,从最一般的意义上讲,NO在线粒体中的作用可能是保护性的,也可能是有害的,这取决于局部氧化还原环境的特定条件(氧化还原电位、氧化型与还原型谷胱甘肽的比例、过渡金属以及其他以氧和氮为中心的自由基的存在)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索