Suppr超能文献

营养添加和环境因素对海洋聚球藻属物种自然种群中前噬菌体诱导的影响。

Effect of nutrient addition and environmental factors on prophage induction in natural populations of marine synechococcus species.

作者信息

McDaniel L, Paul J H

机构信息

College of Marine Science, University of South Florida, 140 7th Ave. S., St. Petersburg, FL 33701, USA.

出版信息

Appl Environ Microbiol. 2005 Feb;71(2):842-50. doi: 10.1128/AEM.71.2.842-850.2005.

Abstract

A series of experiments were conducted with samples collected in both Tampa Bay and the Gulf of Mexico to assess the impact of nutrient addition on cyanophage induction in natural populations of Synechococcus sp. The samples were virus reduced to decrease the background level of cyanophage and then either left untreated or amended with nitrate, ammonium, urea, or phosphate. Replicate samples were treated with mitomycin C to stimulate cyanophage induction. In five of the nine total experiments performed, cyanophage induction was present in the non-nutrient-amended control samples. Stimulation of cyanophage induction in response to nutrient addition (phosphate) occurred in only one Tampa Bay sample. Nutrient additions caused a decrease in lytic (or control) phage production in three of three offshore stations, in one of three estuarine experiments, and in a lysogenic marine Synechococcus in culture. These results suggest that the process of cyanophage induction as an assay of Synechococcus lysogeny was not inorganically nutrient limited, at least in the samples examined. More importantly, it was observed that the level of cyanophage induction (cyanophage milliliter(-1)) was inversely correlated to Synechococcus and cyanophage abundance. Thus, the intensity of the prophage induction response is defined by ambient population size and cyanophage abundance. This corroborates prior observations that lysogeny in Synechococcus is favored during times of low host abundance.

摘要

利用在坦帕湾和墨西哥湾采集的样本进行了一系列实验,以评估添加营养物质对聚球藻属自然种群中噬藻体诱导的影响。对样本进行病毒去除处理以降低噬藻体的背景水平,然后要么不进行处理,要么添加硝酸盐、铵、尿素或磷酸盐。对重复样本用丝裂霉素C进行处理以刺激噬藻体诱导。在总共进行的9次实验中的5次实验中,未添加营养物质的对照样本中出现了噬藻体诱导现象。仅在一个坦帕湾样本中,观察到添加营养物质(磷酸盐)后噬藻体诱导受到刺激。在三个近海站点中的三个、三个河口实验中的一个以及培养的溶原性海洋聚球藻中,添加营养物质导致裂解性(或对照)噬菌体产量下降。这些结果表明,至少在所检测的样本中,作为聚球藻溶原性检测方法的噬藻体诱导过程不受无机营养物质限制。更重要的是,观察到噬藻体诱导水平(噬藻体每毫升数量)与聚球藻和噬藻体丰度呈负相关。因此,原噬菌体诱导反应的强度由环境种群大小和噬藻体丰度决定。这证实了先前的观察结果,即在宿主丰度较低时,聚球藻中的溶原性更受青睐。

相似文献

3
Temperature-induced activation of freshwater Cyanophage AS-1 prophage.
Acta Histochem. 2011 May;113(3):294-9. doi: 10.1016/j.acthis.2009.11.003. Epub 2010 Feb 6.
4
A novel uncultured marine cyanophage lineage with lysogenic potential linked to a putative marine Synechococcus 'relic' prophage.
Environ Microbiol Rep. 2019 Aug;11(4):598-604. doi: 10.1111/1758-2229.12773. Epub 2019 Jun 17.
6
Lysogeny and lytic viral production during a bloom of the cyanobacterium Synechococcus spp.
Microb Ecol. 2002 Mar;43(2):225-31. doi: 10.1007/s00248-001-1058-9. Epub 2002 Feb 8.
7
Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay, Florida.
Appl Environ Microbiol. 2002 Sep;68(9):4307-14. doi: 10.1128/AEM.68.9.4307-4314.2002.
8
Selection and characterization of cyanophage resistance in marine Synechococcus strains.
Appl Environ Microbiol. 2007 Sep;73(17):5516-22. doi: 10.1128/AEM.00356-07. Epub 2007 Jul 13.
9
The first isolation of a cyanophage-Synechococcus system from the East China Sea.
Virol Sin. 2013 Oct;28(5):260-5. doi: 10.1007/s12250-013-3333-6. Epub 2013 Sep 3.

引用本文的文献

2
Seasonal trends in lysogeny in an Appalachian oak-hickory forest soil.
Appl Environ Microbiol. 2024 Jan 24;90(1):e0140823. doi: 10.1128/aem.01408-23. Epub 2023 Dec 12.
5
The bacteriophage decides own tracks: When they are with or against the bacteria.
Curr Res Microb Sci. 2021 Jul 31;2:100050. doi: 10.1016/j.crmicr.2021.100050. eCollection 2021 Dec.
6
Host life-history traits influence the distribution of prophages and the genes they carry.
Philos Trans R Soc Lond B Biol Sci. 2022 Jan 17;377(1842):20200465. doi: 10.1098/rstb.2020.0465. Epub 2021 Nov 29.
7
Glacier ice archives nearly 15,000-year-old microbes and phages.
Microbiome. 2021 Jul 20;9(1):160. doi: 10.1186/s40168-021-01106-w.
8
Changes in Growth Under Simulated Microgravity.
Front Microbiol. 2020 Aug 28;11:2040. doi: 10.3389/fmicb.2020.02040. eCollection 2020.
9
An enhanced bioindicator for calorimetric monitoring of prophage-activating chemicals in the trace concentration range.
Eng Life Sci. 2018 Jun 1;18(7):475-483. doi: 10.1002/elsc.201800026. eCollection 2018 Jul.

本文引用的文献

1
Potential significance of lysogeny to bacteriophage production and bacterial mortality in coastal waters of the gulf of Mexico.
Appl Environ Microbiol. 1996 Dec;62(12):4374-80. doi: 10.1128/aem.62.12.4374-4380.1996.
2
Dynamics and Distribution of Cyanophages and Their Effect on Marine Synechococcus spp.
Appl Environ Microbiol. 1994 Sep;60(9):3167-74. doi: 10.1128/aem.60.9.3167-3174.1994.
3
Resistance to co-occurring phages enables marine synechococcus communities to coexist with cyanophages abundant in seawater.
Appl Environ Microbiol. 1993 Oct;59(10):3393-9. doi: 10.1128/aem.59.10.3393-3399.1993.
4
Cyanophages infecting the oceanic cyanobacterium Prochlorococcus.
Nature. 2003 Aug 28;424(6952):1047-51. doi: 10.1038/nature01929.
5
The genome of a motile marine Synechococcus.
Nature. 2003 Aug 28;424(6952):1037-42. doi: 10.1038/nature01943. Epub 2003 Aug 13.
7
Prophages and bacterial genomics: what have we learned so far?
Mol Microbiol. 2003 Jul;49(2):277-300. doi: 10.1046/j.1365-2958.2003.03580.x.
8
Phages of the marine cyanobacterial picophytoplankton.
FEMS Microbiol Rev. 2003 Apr;27(1):17-34. doi: 10.1016/S0168-6445(03)00016-0.
9
Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay, Florida.
Appl Environ Microbiol. 2002 Sep;68(9):4307-14. doi: 10.1128/AEM.68.9.4307-4314.2002.
10
Dynamic characteristics of Prochlorococcus and Synechococcus consumption by bacterivorous nanoflagellates.
Microb Ecol. 2002 Apr;43(3):341-52. doi: 10.1007/s00248-002-2002-3. Epub 2002 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验