Suppr超能文献

嗜铁素对细菌RNA聚合酶抑制作用的结构、功能及遗传学分析

Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase.

作者信息

Campbell Elizabeth A, Pavlova Olga, Zenkin Nikolay, Leon Fred, Irschik Herbert, Jansen Rolf, Severinov Konstantin, Darst Seth A

机构信息

The Rockefeller University, New York, NY 10021, USA.

出版信息

EMBO J. 2005 Feb 23;24(4):674-82. doi: 10.1038/sj.emboj.7600499. Epub 2005 Feb 3.

Abstract

A combined structural, functional, and genetic approach was used to investigate inhibition of bacterial RNA polymerase (RNAP) by sorangicin (Sor), a macrolide polyether antibiotic. Sor lacks chemical and structural similarity to the ansamycin rifampicin (Rif), an RNAP inhibitor widely used to treat tuberculosis. Nevertheless, structural analysis revealed Sor binds in the same RNAP beta subunit pocket as Rif, with almost complete overlap of RNAP binding determinants, and functional analysis revealed that both antibiotics inhibit transcription by directly blocking the path of the elongating transcript at a length of 2-3 nucleotides. Genetic analysis indicates that Rif binding is extremely sensitive to mutations expected to change the shape of the antibiotic binding pocket, while Sor is not. We suggest that conformational flexibility of Sor, in contrast to the rigid conformation of Rif, allows Sor to adapt to changes in the binding pocket. This has important implications for drug design against rapidly mutating targets.

摘要

采用结构、功能和遗传学相结合的方法,研究大环内酯聚醚抗生素索兰吉星(Sor)对细菌RNA聚合酶(RNAP)的抑制作用。索兰吉星与广泛用于治疗结核病的RNAP抑制剂安莎霉素利福平(Rif)在化学和结构上缺乏相似性。然而,结构分析表明,索兰吉星与利福平结合在相同的RNAPβ亚基口袋中,RNAP结合决定簇几乎完全重叠,功能分析表明,两种抗生素都通过在2-3个核苷酸长度处直接阻断延伸转录本的路径来抑制转录。遗传学分析表明,利福平结合对预期会改变抗生素结合口袋形状的突变极为敏感,而索兰吉星则不然。我们认为,与利福平的刚性构象相比,索兰吉星的构象灵活性使其能够适应结合口袋的变化。这对针对快速突变靶点的药物设计具有重要意义。

相似文献

1
Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase.
EMBO J. 2005 Feb 23;24(4):674-82. doi: 10.1038/sj.emboj.7600499. Epub 2005 Feb 3.
2
The antibiotic sorangicin A inhibits promoter DNA unwinding in a rifampicin-resistant RNA polymerase.
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30423-30432. doi: 10.1073/pnas.2013706117. Epub 2020 Nov 16.
3
Structural mechanism for rifampicin inhibition of bacterial rna polymerase.
Cell. 2001 Mar 23;104(6):901-12. doi: 10.1016/s0092-8674(01)00286-0.
4
Cross-resistance of Escherichia coli RNA polymerases conferring rifampin resistance to different antibiotics.
J Bacteriol. 2005 Apr;187(8):2783-92. doi: 10.1128/JB.187.8.2783-2792.2005.
6
Molecular insights into the mechanism of phenotypic tolerance to rifampicin conferred on mycobacterial RNA polymerase by MsRbpA.
Microbiology (Reading). 2011 Jul;157(Pt 7):2056-2071. doi: 10.1099/mic.0.047480-0. Epub 2011 Mar 17.
7
Resistance of Escherichia coli to rifampicin and sorangicin A--a comparison.
J Antibiot (Tokyo). 1990 Jan;43(1):88-91. doi: 10.7164/antibiotics.43.88.
8
Structural Basis of Mycobacterium tuberculosis Transcription and Transcription Inhibition.
Mol Cell. 2017 Apr 20;66(2):169-179.e8. doi: 10.1016/j.molcel.2017.03.001. Epub 2017 Apr 6.
10
Resistance to rifampicin: a review.
J Antibiot (Tokyo). 2014 Sep;67(9):625-30. doi: 10.1038/ja.2014.107. Epub 2014 Aug 13.

引用本文的文献

1
Molecular chameleons adaptability in target binding.
Struct Dyn. 2025 Aug 13;12(4):044701. doi: 10.1063/4.0000757. eCollection 2025 Jul.
2
Targeting Bacterial RNA Polymerase: Harnessing Simulations and Machine Learning to Design Inhibitors for Drug-Resistant Pathogens.
Biochemistry. 2025 Mar 18;64(6):1169-1179. doi: 10.1021/acs.biochem.4c00751. Epub 2025 Feb 27.
3
Bimodality in E. coli gene expression: Sources and robustness to genome-wide stresses.
PLoS Comput Biol. 2025 Feb 13;21(2):e1012817. doi: 10.1371/journal.pcbi.1012817. eCollection 2025 Feb.
4
Synthesis and antibiotic potential of myxocoumarin-inspired chromene dione analogs.
RSC Adv. 2024 Nov 5;14(47):35215-35219. doi: 10.1039/d4ra05941g. eCollection 2024 Oct 29.
5
Transcription Attenuation in Synthetic Promoters in Nonoverlapping Tandem Formation.
Biochemistry. 2024 Aug 20;63(16):2009-2022. doi: 10.1021/acs.biochem.4c00012. Epub 2024 Jul 12.
6
Heterologous biosynthesis of myxobacterial lanthipeptides melittapeptins.
Appl Microbiol Biotechnol. 2024 Dec;108(1):122. doi: 10.1007/s00253-023-12834-4. Epub 2024 Jan 15.
8
Siderophore conjugation with cleavable linkers boosts the potency of RNA polymerase inhibitors against multidrug-resistant .
Chem Sci. 2023 Apr 26;14(20):5490-5502. doi: 10.1039/d2sc06850h. eCollection 2023 May 24.
9
Synthesis and Characterization of DOTAM-Based Sideromycins for Bacterial Imaging and Antimicrobial Therapy.
ACS Infect Dis. 2023 Feb 10;9(2):330-341. doi: 10.1021/acsinfecdis.2c00523. Epub 2023 Jan 31.
10

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Refinement of macromolecular structures by the maximum-likelihood method.
Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55. doi: 10.1107/S0907444996012255.
3
New inhibitors targeting bacterial RNA polymerase.
Trends Biochem Sci. 2004 Apr;29(4):159-60. doi: 10.1016/j.tibs.2004.02.005.
5
Microbial selection.
Science. 1952 Jul 18;116(3003):45-51.
6
Preparation and characterization of recombinant Thermus aquaticus RNA polymerase.
Methods Enzymol. 2003;370:94-108. doi: 10.1016/S0076-6879(03)70009-3.
8
Molecular Recognition of Proteinminus signLigand Complexes: Applications to Drug Design.
Chem Rev. 1997 Aug 5;97(5):1359-1472. doi: 10.1021/cr960370z.
9
Structural mechanism for rifampicin inhibition of bacterial rna polymerase.
Cell. 2001 Mar 23;104(6):901-12. doi: 10.1016/s0092-8674(01)00286-0.
10
Use of TLS parameters to model anisotropic displacements in macromolecular refinement.
Acta Crystallogr D Biol Crystallogr. 2001 Jan;57(Pt 1):122-33. doi: 10.1107/s0907444900014736.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验