Mathews C E, Leiter E H, Spirina O, Bykhovskaya Y, Gusdon A M, Ringquist S, Fischel-Ghodsian N
Department of Pediatrics, Diabetes Institute, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 3460 5th Ave., Rangos Research Center, Pittsburgh, PA 15213, USA.
Diabetologia. 2005 Feb;48(2):261-7. doi: 10.1007/s00125-004-1644-8. Epub 2005 Feb 4.
AIMS/HYPOTHESIS: ALR/Lt, a mouse strain with strong resistance to type 1 diabetes, is closely related to autoimmune type 1 diabetes-prone NOD/Lt mice. ALR pancreatic beta cells are resistant to the beta cell toxin alloxan, combinations of cytotoxic cytokines, and diabetogenic NOD T-cell lines. Reciprocal F1 hybrids between either ALR and NOD or ALR and NON/Lt, showed that alloxan resistance was transmitted to F1 progeny only when ALR was the maternal parent. Here we show that the mitochondrial genome (mtDNA) of ALR mice contributes resistance to diabetes.
When F1 progeny from reciprocal outcrosses between ALR and NOD were backcrossed to NOD, a four-fold lower frequency of spontaneous type 1 diabetes development occurred when ALR contributed the mtDNA. Because of the apparent interaction between nuclear and mtDNA, the mitochondrial genomes were sequenced.
An ALR-specific sequence variation in the mt-Nd2 gene producing a leucine to methionine substitution at amino acid residue 276 in the NADH dehydrogenase 2 was discovered. An isoleucine to valine mutation in the mt-Co3 gene encoding COX3 distinguished ALR and NOD from NON and ALS. All four strains were distinguished by variation in a mt-encoded arginyl tRNA polyadenine tract. Shared alleles of mt-Co3 and mt-Tr comparing NOD and ALR allowed for exclusion of these two genes as candidates, implicating the mt-Nd2 variation as a potential ALR-derived type 1 diabetes protective gene.
CONCLUSIONS/INTERPRETATION: The unusual resistance of ALR mice to both ROS-mediated and autoimmune type 1 diabete stresses reflects an interaction between the nuclear and mt genomes. The latter contribution is most likely via a single nucleotide polymorphism in mt-Nd2.
目的/假设:ALR/Lt是一种对1型糖尿病具有强抗性的小鼠品系,与易患自身免疫性1型糖尿病的NOD/Lt小鼠密切相关。ALR胰腺β细胞对β细胞毒素四氧嘧啶、细胞毒性细胞因子组合以及致糖尿病的NOD T细胞系具有抗性。ALR与NOD或ALR与NON/Lt之间的正反交F1杂种表明,仅当ALR作为母本时,四氧嘧啶抗性才会传递给F1后代。在此我们表明,ALR小鼠的线粒体基因组(mtDNA)有助于抵抗糖尿病。
当ALR与NOD之间正反交的F1后代与NOD回交时,当ALR贡献mtDNA时,自发1型糖尿病发生的频率降低了四倍。由于核基因组与mtDNA之间存在明显的相互作用,因此对线粒体基因组进行了测序。
发现mt-Nd2基因中存在ALR特异性序列变异,该变异导致烟酰胺腺嘌呤二核苷酸脱氢酶2中氨基酸残基276处的亮氨酸替换为甲硫氨酸。编码COX3的mt-Co3基因中的异亮氨酸到缬氨酸突变区分了ALR和NOD与NON和ALS。通过mt编码的精氨酰tRNA聚腺苷酸序列的变异区分了所有这四个品系。比较NOD和ALR时,mt-Co3和mt-Tr的共享等位基因排除了这两个基因作为候选基因,这表明mt-Nd2变异是潜在的源自ALR的1型糖尿病保护基因。
结论/解读:ALR小鼠对ROS介导的和自身免疫性1型糖尿病应激的异常抗性反映了核基因组与mt基因组之间的相互作用。后者的贡献很可能是通过mt-Nd2中的单核苷酸多态性实现的。