Suppr超能文献

扩展通用事件模型以支持从文本指南中提取知识。

Extending the GEM model to support knowledge extraction from textual guidelines.

作者信息

Georg Gersende, Séroussi Brigitte, Bouaud Jacques

机构信息

SPIM, Inserm ERM 202, Université Paris 6, 15 Rue de l'Ecole de Médecine, F-75006 Paris, France.

出版信息

Int J Med Inform. 2005 Mar;74(2-4):79-87. doi: 10.1016/j.ijmedinf.2004.07.006.

Abstract

Clinical Practice Guidelines (CPGs) are being developed as a tool to promote best practice in medicine. However, the diffusion of paper guidelines has been shown to only have a limited impact. This is why computerization of CPGs has recently been suggested as a means to improve their dissemination as well as physicians' compliance. The Guideline Elements Model (GEM) has been proposed to facilitate the encoding of CPGs and support the automatic processing of marked-up documents. In this paper, we explore the automatic generation of a rule base from a textual guideline using GEM. In this study, we propose an extension of the GEM model that introduces additional levels of structuring centered on decision variables. This allows a more efficient representation of the decision processes, which supports the automatic generation of decision rules from textual guidelines. The 1999 Canadian recommendations for the management of hypertension have been marked-up as a GEM-encoded instance of our extended DTD. We derived a rule base using an XML parser to extract the relevant elements to instantiate the IF and THEN clauses of decision rules. The rule base automatically generated compares favourably with the manual generation of decision rules in the ASTI project. This approach is an interesting case study in the computerization of CPGs, as it illustrates processing steps that are relevant to the various aspects of CPGs life-cycle, from production to consultation and use.

摘要

临床实践指南(CPGs)正被开发为促进医学最佳实践的一种工具。然而,纸质指南的传播已被证明影响有限。这就是为什么最近有人建议将CPGs计算机化,以此作为改善其传播以及医生依从性的一种手段。指南要素模型(GEM)已被提出,以促进CPGs的编码并支持对标记文档的自动处理。在本文中,我们探索使用GEM从文本指南自动生成规则库。在本研究中,我们提出了GEM模型的一个扩展,该扩展引入了以决策变量为中心的额外结构化层次。这使得决策过程能够得到更有效的表示,从而支持从文本指南自动生成决策规则。1999年加拿大高血压管理建议已被标记为我们扩展DTD的GEM编码实例。我们使用XML解析器提取相关元素来实例化决策规则的IF和THEN子句,从而导出了一个规则库。自动生成的规则库与ASTI项目中手动生成的决策规则相比具有优势。这种方法是CPGs计算机化方面一个有趣的案例研究,因为它展示了与CPGs生命周期从制定到咨询和使用的各个方面相关的处理步骤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验