Suppr超能文献

3'-脱氧-3'-氟胸腺嘧啶PET研究的动力学分析:肺癌患者的验证研究

Kinetic analysis of 3'-deoxy-3'-fluorothymidine PET studies: validation studies in patients with lung cancer.

作者信息

Muzi Mark, Vesselle Hubert, Grierson John R, Mankoff David A, Schmidt Rodney A, Peterson Lanell, Wells Joanne M, Krohn Kenneth A

机构信息

Department of Radiology, University of Washington, Seattle, Washington 98195-6465, USA.

出版信息

J Nucl Med. 2005 Feb;46(2):274-82.

Abstract

UNLABELLED

Assessing cellular proliferation provides a direct method to measure the in vivo growth of cancer. We evaluated the application of a model of 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) kinetics described in a companion report to the analysis of FLT PET image data in lung cancer patients. Compartmental model analysis was performed to estimate the overall flux constants (K(FLT)) for FLT phosphorylation in tumor, bone marrow, and muscle. Estimates of flux were compared with an in vitro assay of proliferation (Ki-67) applied to tissue derived from surgical resection. Compartmental modeling results were compared with simple model-independent methods of estimating FLT uptake.

METHODS

Seventeen patients with 18 tumor sites underwent up to 2 h of dynamic PET with blood sampling. Metabolite analysis of plasma samples corrected the total blood activity for labeled metabolites and provided the FLT model input function. A 2-compartment, 4-parameter model (4P) was tested and compared with a 2-compartment, 3-parameter (3P) model for estimating K(FLT).

RESULTS

Bone marrow, a proliferative normal tissue, had the highest values of K(FLT), whereas muscle, a nonproliferating tissue, showed the lowest values. The K(FLT) for tumors estimated by compartmental analysis had a fair correlation with estimates by modified graphical analysis (r = 0.86) and a poorer correlation with the average standardized uptake value (r = 0.62) in tumor. Estimates of K(FLT) derived from 60 min of dynamic PET data using the 3P model underestimated K(FLT) compared with 90 or 120 min of dynamic data analyzed using the 4P model. Comparison of flux estimates with an independent measure of cellular proliferation showed that K(FLT) was highly correlated with Ki-67 (Spearman rho = 0.92, P < 0.001). Ignoring the metabolites of FLT in blood underestimated K(FLT) by as much as 47%.

CONCLUSION

Compartmental analysis of FLT PET image data yielded robust estimates of K(FLT) that correlated with in vitro measures of tumor proliferation. This method can be applied generally to other imaging studies of different cancers after validation of parameter error. Tumor loss of phosphorylated FLT nucleotides (k(4)) is notable and leads to errors when FLT uptake is evaluated using model-independent approaches that ignore k(4), such as graphical analysis or the SUV.

摘要

未标注

评估细胞增殖为测量癌症的体内生长提供了一种直接方法。我们评估了在一篇配套报告中描述的3'-脱氧-3'-(18)F-氟代胸腺嘧啶((18)F-FLT)动力学模型在肺癌患者FLT PET图像数据分析中的应用。进行房室模型分析以估计肿瘤、骨髓和肌肉中FLT磷酸化的总通量常数(K(FLT))。将通量估计值与应用于手术切除组织的体外增殖测定(Ki-67)进行比较。将房室建模结果与估计FLT摄取的简单非模型依赖方法进行比较。

方法

17例有18个肿瘤部位的患者接受了长达2小时的动态PET检查并采集血样。血浆样本的代谢物分析校正了标记代谢物的总血药活性并提供了FLT模型输入函数。测试了一个两房室、四参数模型(4P)并与一个两房室、三参数(3P)模型比较以估计K(FLT)。

结果

骨髓是一种增殖性正常组织,其K(FLT)值最高,而肌肉是一种非增殖组织,其K(FLT)值最低。通过房室分析估计的肿瘤K(FLT)与改良图形分析的估计值有较好的相关性(r = 0.86),与肿瘤中的平均标准化摄取值(r = 0.62)相关性较差。与使用4P模型分析90或120分钟动态数据相比,使用3P模型从60分钟动态PET数据得出的K(FLT)估计值低估了K(FLT)。将通量估计值与细胞增殖的独立测量值进行比较表明,K(FLT)与Ki-67高度相关(Spearman秩相关系数 = 0.92,P < 0.001)。忽略血液中FLT的代谢产物会使K(FLT)低估多达47%。

结论

对FLT PET图像数据进行房室分析得出了与肿瘤增殖体外测量值相关的可靠的K(FLT)估计值。在验证参数误差后,该方法可普遍应用于其他不同癌症的成像研究。磷酸化FLT核苷酸的肿瘤丢失(k(4))很显著,当使用忽略k(4)的非模型依赖方法(如图形分析或SUV)评估FLT摄取时会导致误差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验