Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and.
J Nucl Med. 2022 Apr;63(4):514-521. doi: 10.2967/jnumed.121.263519.
On successful completion of this activity, participants should be able to (1) describe examples of the application of PET tracer kinetic analysis to oncology; (2) list applications research and possible clinical applications in oncology where kinetic analysis is helpful; and (3) discuss future applications of kinetic modeling to cancer research and possible clinical cancer imaging practice. This work was supported by KL2 TR001879, R01 CA211337, R01 CA113941, R33 CA225310, Komen SAC130060, R50 CA211270, and K01 DA040023. Dr. Pantel is a consultant or advisor for Progenics and Blue Earth Diagnostics and is a meeting participant or lecturer for Blue Earth Diagnostics. Dr. Mankoff is on the scientific advisory boards of GE Healthcare, Philips Healthcare, Reflexion, and ImaginAb and is the owner of Trevarx; his wife is the chief executive officer of Trevarx. The authors of this article have indicated no other relevant relationships that could be perceived as a real or apparent conflict of interest. SNMMI is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to sponsor continuing education for physicians. SNMMI designates each continuing education article for a maximum of 2.0 AMA PRA Category 1 Credits. Physicians should claim only credit commensurate with the extent of their participation in the activity. For CE credit, SAM, and other credit types, participants can access this activity through the SNMMI website (http://www.snmmilearningcenter.org) through April 2025.Kinetic analysis of dynamic PET imaging enables the estimation of biologic processes relevant to disease. Through mathematic analysis of the interactions of a radiotracer with tissue, information can be gleaned from PET imaging beyond static uptake measures. Part I of this 2-part continuing education paper reviewed the underlying principles and methodology of kinetic modeling. In this second part, the benefits of kinetic modeling for oncologic imaging are illustrated through representative case examples that demonstrate the principles and benefits of kinetic analysis in oncology. Examples of the model types discussed in part I are reviewed here: a 1-tissue-compartment model (O-water), an irreversible 2-tissue-compartment model (F-FDG), and a reversible 2-tissue-compartment model (3'-deoxy-3'-F-fluorothymidine). Kinetic approaches are contrasted with static uptake measures typically used in the clinic. Overall, this 2-part review provides the reader with background in kinetic analysis to understand related research and improve the interpretation of clinical nuclear medicine studies with a focus on oncologic imaging.
在成功完成此活动后,参与者应能够:(1)描述正电子发射断层扫描示踪剂动力学分析在肿瘤学中的应用实例;(2)列出在肿瘤学中有助于动力学分析的应用研究和可能的临床应用;(3)讨论动力学建模在癌症研究和可能的临床癌症成像实践中的未来应用。这项工作得到了 KL2 TR001879、R01 CA211337、R01 CA113941、R33 CA225310、Komen SAC130060、R50 CA211270 和 K01 DA040023 的支持。潘特尔博士是 Progenics 和 Blue Earth Diagnostics 的顾问或顾问,是 Blue Earth Diagnostics 的会议参与者或讲师。曼科夫博士是通用电气医疗、飞利浦医疗、Reflexion 和 ImaginAb 的科学顾问委员会成员,也是 Trevarx 的所有者;他的妻子是 Trevarx 的首席执行官。本文作者表示,没有其他相关关系可以被视为真正或明显的利益冲突。核医学与分子影像学会 (SNMMI) 经继续医学教育认证委员会 (ACCME) 认证,可为医生提供继续教育。SNMMI 将每个继续教育文章最多指定为 2.0 个 AMA PRA 类别 1 学分。医生应仅声称与其参与活动程度相符的学分。对于 CE 学分、SAM 和其他类型的学分,参与者可以通过 SNMMI 网站(http://www.snmmilearningcenter.org)访问此活动,截止到 2025 年 4 月。动态正电子发射断层扫描成像的动力学分析能够估计与疾病相关的生物过程。通过对示踪剂与组织相互作用的数学分析,可以从 PET 成像中获取超出静态摄取测量的信息。本继续教育论文的两部分中的第一部分回顾了动力学建模的基本原理和方法。在第二部分中,通过代表病例示例说明了动力学建模对肿瘤成像的益处,这些示例说明了在肿瘤学中进行动力学分析的原理和益处。本文还回顾了第一部分中讨论的模型类型:1 组织室模型(O-水)、不可逆 2 组织室模型(F-FDG)和可逆 2 组织室模型(3'-脱氧-3'-F-氟胸苷)。动力学方法与临床中常用的静态摄取测量进行了对比。总的来说,这两部分综述为读者提供了动力学分析方面的背景知识,以帮助理解相关研究并提高对重点是肿瘤成像的临床核医学研究的解释。