Breazeale Steven D, Ribeiro Anthony A, McClerren Amanda L, Raetz Christian R H
Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
J Biol Chem. 2005 Apr 8;280(14):14154-67. doi: 10.1074/jbc.M414265200. Epub 2005 Jan 28.
Modification of the phosphate groups of lipid A with 4-amino-4-deoxy-L-arabinose (L-Ara4N) is required for resistance to polymyxin and cationic antimicrobial peptides in Escherichia coli and Salmonella typhimurium. We previously demonstrated that the enzyme ArnA catalyzes the NAD+-dependent oxidative decarboxylation of UDP-glucuronic acid to yield the UDP-4''-ketopentose, uridine 5'-diphospho-beta-(L-threo-pentapyranosyl-4''-ulose), which is converted by ArnB to UDP-beta-(L-Ara4N). E. coli ArnA is a bi-functional enzyme with a molecular mass of approximately 74 kDa. The oxidative decarboxylation of UDP-glucuronic acid is catalyzed by the 345-residue C-terminal domain of ArnA. The latter shows sequence similarity to enzymes that oxidize the C-4'' position of sugar nucleotides, like UDP-galactose epimerase, dTDP-glucose-4,6-dehydratase, and UDP-xylose synthase. We now show that the 304-residue N-terminal domain catalyzes the N-10-formyltetrahydrofolate-dependent formylation of the 4''-amine of UDP-L-Ara4N, generating the novel sugar nucleotide, uridine 5'-diphospho-beta-(4-deoxy-4-formamido-L-arabinose). The N-terminal domain is highly homologous to methionyl-tRNA(f)Met formyltransferase. The structure of the formylated sugar nucleotide generated in vitro by ArnA was validated by 1H and 13C NMR spectroscopy. The two domains of ArnA were expressed independently as active proteins in E. coli. Both were required for maintenance of polymyxin resistance and L-Ara4N modification of lipid A. We conclude that N-formylation of UDP-L-Ara4N is an obligatory step in the biosynthesis of L-Ara4N-modified lipid A in polymyxin-resistant mutants. We further demonstrate that only the formylated sugar nucleotide is converted in vitro to an undecaprenyl phosphate-linked form by the enzyme ArnC. Because the L-Ara4N unit attached to lipid A is not derivatized with a formyl group, we postulate the existence of a deformylase, acting later in the pathway.
在大肠杆菌和鼠伤寒沙门氏菌中,脂质A的磷酸基团被4-氨基-4-脱氧-L-阿拉伯糖(L-Ara4N)修饰是抵抗多粘菌素和阳离子抗菌肽所必需的。我们之前证明,ArnA酶催化UDP-葡萄糖醛酸的NAD+依赖性氧化脱羧反应,生成UDP-4''-酮戊糖,即尿苷5'-二磷酸-β-(L-苏式-戊吡喃糖基-4''-酮糖),它被ArnB转化为UDP-β-(L-Ara4N)。大肠杆菌ArnA是一种分子量约为74 kDa的双功能酶。UDP-葡萄糖醛酸的氧化脱羧反应由ArnA的345个残基的C末端结构域催化。后者与氧化糖核苷酸C-4''位置的酶具有序列相似性,如UDP-半乳糖差向异构酶、dTDP-葡萄糖-4,6-脱水酶和UDP-木糖合酶。我们现在表明,304个残基的N末端结构域催化UDP-L-Ara4N的4''-胺的N-10-甲酰四氢叶酸依赖性甲酰化反应,生成新的糖核苷酸,尿苷5'-二磷酸-β-(4-脱氧-4-甲酰胺基-L-阿拉伯糖)。N末端结构域与甲硫氨酰-tRNA(f)Met甲酰转移酶高度同源。通过1H和13C NMR光谱验证了ArnA在体外生成的甲酰化糖核苷酸的结构。ArnA的两个结构域在大肠杆菌中作为活性蛋白独立表达。两者都是维持多粘菌素抗性和脂质A的L-Ara4N修饰所必需的。我们得出结论,UDP-L-Ara4N的N-甲酰化是多粘菌素抗性突变体中L-Ara4N修饰的脂质A生物合成中的一个必要步骤。我们进一步证明,只有甲酰化的糖核苷酸在体外被ArnC酶转化为磷酸十一异戊烯连接的形式。由于连接到脂质A的L-Ara4N单元没有被甲酰基衍生化,我们推测存在一种脱甲酰酶,在该途径的后期起作用。