Aldana Maximino, Larralde Hernán
Centro de Ciencias Físicas, UNAM, Apartado Postal 48-3, Codigo Postal 62251, Cuernavaca, Morelos, Mexico.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 2):066130. doi: 10.1103/PhysRevE.70.066130. Epub 2004 Dec 22.
We investigate the nature of the phase transition from an ordered to a disordered state that occurs in a family of neural network models with noise. These models are closely related to the majority voter model, where a ferromagneticlike interaction between the elements prevails. Each member of the family is distinguished by the network topology, which is determined by the probability distribution of the number of incoming links. We show that for homogeneous random topologies, the phase transition belongs to the standard mean-field universality class, characterized by the order parameter exponent beta=1/2 . However, for scale-free networks we obtain phase transition exponents ranging from 1/2 to infinity. Furthermore, we show the existence of a phase transition even for values of the scale-free exponent in the interval (1.5,2], where the average network connectivity diverges.
我们研究了一类带有噪声的神经网络模型中从有序状态到无序状态的相变性质。这些模型与多数投票者模型密切相关,其中元素之间存在类似铁磁的相互作用。该类模型中的每个成员都由网络拓扑结构区分,网络拓扑结构由入边数量的概率分布决定。我们表明,对于均匀随机拓扑结构,相变属于标准平均场普适类,其特征是序参量指数β = 1/2。然而,对于无标度网络,我们得到的相变指数范围从1/2到无穷大。此外,我们还表明,即使在无标度指数取值区间(1.5, 2]内,平均网络连通性发散时,也存在相变。