Shi Yong, Zhao T S, Guo Z L
Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 2):066310. doi: 10.1103/PhysRevE.70.066310. Epub 2004 Dec 27.
In this paper, by introducing a different distribution function and starting from the Boltzmann equation as well as the Maxwell-Boltzmann distribution, we obtain a Boltzmann Bhatnagar-Gross-Krook (BGK) equation for thermal flows with viscous heat dissipation in the incompressible limit. The continuous thermal BGK model is then discretized over both time and phase space to form a lattice BGK model, which is shown to be consistent with some existing double distribution function lattice BGK models based on macroscopic governing equations. We have also demonstrated that the lattice BGK model derived theoretically in this work can be used to simulate laminar incompressible convention heat transfer with/without viscous heat dissipation.
在本文中,通过引入一种不同的分布函数,并从玻尔兹曼方程以及麦克斯韦 - 玻尔兹曼分布出发,我们在不可压缩极限下得到了一个用于具有粘性热耗散的热流的玻尔兹曼 - 巴特纳格尔 - 格罗斯 - 克鲁克(BGK)方程。然后,连续热BGK模型在时间和相空间上进行离散化,以形成一个格子BGK模型,该模型被证明与一些基于宏观控制方程的现有双分布函数格子BGK模型是一致的。我们还证明了在这项工作中理论推导得到的格子BGK模型可用于模拟有/无粘性热耗散的层流不可压缩对流换热。