Luo Li-Shi
Department of Mathematics & Statistics and Center for Computational Sciences, Old Dominion University, Norfolk, Virginia 23529, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 2):048301; discussion 048302. doi: 10.1103/PhysRevE.84.048301. Epub 2011 Oct 25.
In this Comment we reveal the falsehood of the claim that the lattice Bhatnagar-Gross-Krook (BGK) model "is capable of modeling shear-driven, pressure-driven, and mixed shear-pressure-driven rarified [sic] flows and heat transfer up to Kn=1 in the transitional regime" made in a recent paper [Ghazanfarian and Abbassi, Phys. Rev. E 82, 026307 (2010)]. In particular, we demonstrate that the so-called "Knudsen effects" described are merely numerical artifacts of the lattice BGK model and they are unphysical. Specifically, we show that the erroneous results for the pressure-driven flow in a microchannel imply the false and unphysical condition that 6σKn<-1, where Kn is the Knudsen number σ=(2-σ(v))/σ(v) and σ(v)∈(0,1] is the tangential momentum accommodation coefficient. We also show explicitly that the defects of the lattice BGK model can be completely removed by using the multiple-relaxation-time collision model.
在本评论中,我们揭示了最近一篇论文[加赞法里安和阿巴西,《物理评论E》82,026307(2010年)]中所声称的“格子 Bhatnagar-Gross-Krook(BGK)模型能够在过渡区域模拟剪切驱动、压力驱动以及混合剪切-压力驱动的稀薄[原文如此]流动和热传递,直至克努森数Kn = 1”这一说法的错误之处。具体而言,我们证明所描述的所谓“克努森效应”仅仅是格子BGK模型的数值假象,并非物理真实情况。特别地,我们表明微通道中压力驱动流动的错误结果暗示了6σKn < -1这一错误且不符合物理实际的条件,其中Kn是克努森数,σ = (2 - σ(v)) / σ(v),且σ(v)∈(0,1]是切向动量适应系数。我们还明确表明,通过使用多松弛时间碰撞模型可以完全消除格子BGK模型的缺陷。