Suppr超能文献

近堵塞无序和有序硬球堆积的对关联函数特征

Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings.

作者信息

Donev Aleksandar, Torquato Salvatore, Stillinger Frank H

机构信息

Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jan;71(1 Pt 1):011105. doi: 10.1103/PhysRevE.71.011105. Epub 2005 Jan 12.

Abstract

We study the approach to jamming in hard-sphere packings and, in particular, the pair correlation function g(2) (r) around contact, both theoretically and computationally. Our computational data unambiguously separate the narrowing delta -function contribution to g(2) due to emerging interparticle contacts from the background contribution due to near contacts. The data also show with unprecedented accuracy that disordered hard-sphere packings are strictly isostatic: i.e., the number of exact contacts in the jamming limit is exactly equal to the number of degrees of freedom, once rattlers are removed. For such isostatic packings, we derive a theoretical connection between the probability distribution of interparticle forces P(f) (f) , which we measure computationally, and the contact contribution to g(2) . We verify this relation for computationally generated isostatic packings that are representative of the maximally random jammed state. We clearly observe a maximum in P(f) and a nonzero probability of zero force, shedding light on long-standing questions in the granular-media literature. We computationally observe an unusual power-law divergence in the near-contact contribution to g(2) , persistent even in the jamming limit, with exponent -0.4 clearly distinguishable from previously proposed inverse-square-root divergence. Additionally, we present high-quality numerical data on the two discontinuities in the split-second peak of g(2) and use a shared-neighbor analysis of the graph representing the contact network to study the local particle clusters responsible for the peculiar features. Finally, we present the computational data on the contact contribution to g(2) for vacancy-diluted fcc crystal packings and also investigate partially crystallized packings along the transition from maximally disordered to fully ordered packings. We find that the contact network remains isostatic even when ordering is present. Unlike previous studies, we find that ordering has a significant impact on the shape of P(f) for small forces.

摘要

我们从理论和计算两方面研究了硬球堆积中的堵塞方法,特别是接触附近的对关联函数g(2)(r)。我们的计算数据明确地将由于新出现的粒子间接触而对g(2)产生的变窄的δ函数贡献与由于近接触而产生的背景贡献区分开来。数据还以前所未有的精度表明,无序硬球堆积严格等静:即,一旦去除 rattlers,堵塞极限下的精确接触数恰好等于自由度的数量。对于这种等静堆积,我们推导了粒子间力的概率分布P(f)(我们通过计算测量)与g(2)的接触贡献之间的理论联系。我们针对代表最大随机堵塞状态的计算生成的等静堆积验证了这种关系。我们清楚地观察到P(f)中的最大值和零力的非零概率,这为颗粒介质文献中的长期问题提供了线索。我们通过计算观察到g(2)的近接触贡献中存在异常的幂律发散,即使在堵塞极限下仍然存在,其指数 -0.4 与先前提出的平方根反比发散明显不同。此外,我们给出了关于g(2)的瞬间峰值中的两个不连续性的高质量数值数据,并使用表示接触网络的图的共享邻居分析来研究负责这些特殊特征的局部粒子簇。最后,我们给出了空位稀释的面心立方晶体堆积中g(2)的接触贡献的计算数据,并研究了从最大无序到完全有序堆积转变过程中的部分结晶堆积。我们发现即使存在有序性,接触网络仍然是等静的。与先前的研究不同,我们发现有序性对小力下P(f)的形状有显著影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验